What is cancer detection? Cancer detection using Artificial Intelligence (AI) involves leveraging advanced machine learning algorithms and techniques to identify and diagnose cancer from various medical data sources. The goal is to enhance early detection, improve diagnostic accuracy, and potentially reduce the need for invasive procedures.
Papers and Code
Nov 04, 2024
Abstract:Fully supervised deep models have shown promising performance for many medical segmentation tasks. Still, the deployment of these tools in clinics is limited by the very timeconsuming collection of manually expert-annotated data. Moreover, most of the state-ofthe-art models have been trained and validated on moderately homogeneous datasets. It is known that deep learning methods are often greatly degraded by domain or label shifts and are yet to be built in such a way as to be robust to unseen data or label distributions. In the clinical setting, this problematic is particularly relevant as the deployment institutions may have different scanners or acquisition protocols than those from which the data has been collected to train the model. In this work, we propose to address these two challenges on the detection of clinically significant prostate cancer (csPCa) from bi-parametric MRI. We evaluate the method proposed by (Kervadec et al., 2018), which introduces a size constaint loss to produce fine semantic cancer lesions segmentations from weak circle scribbles annotations. Performance of the model is based on two public (PI-CAI and Prostate158) and one private databases. First, we show that the model achieves on-par performance with strong fully supervised baseline models, both on in-distribution validation data and unseen test images. Second, we observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains. This confirms the crucial need for efficient domain adaptation methods if deep learning models are aimed to be deployed in a clinical environment. Finally, we show that ensemble predictions from multiple trainings increase generalization performance.
* Medical Imaging with Deep Learning, Jul 2024, Paris, France
Via

Nov 14, 2024
Abstract:Automatic melanoma segmentation is essential for early skin cancer detection, yet challenges arise from the heterogeneity of melanoma, as well as interfering factors like blurred boundaries, low contrast, and imaging artifacts. While numerous algorithms have been developed to address these issues, previous approaches have often overlooked the need to jointly capture spatial and sequential features within dermatological images. This limitation hampers segmentation accuracy, especially in cases with indistinct borders or structurally similar lesions. Additionally, previous models lacked both a global receptive field and high computational efficiency. In this work, we present the XLSTM-VMUNet Model, which jointly capture spatial and sequential features within derma-tological images successfully. XLSTM-VMUNet can not only specialize in extracting spatial features from images, focusing on the structural characteristics of skin lesions, but also enhance contextual understanding, allowing more effective handling of complex medical image structures. Experiment results on the ISIC2018 dataset demonstrate that XLSTM-VMUNet outperforms VMUNet by 1.25% on DSC and 2.07% on IoU, with faster convergence and consistently high segmentation perfor-mance. Our code of XLSTM-VMUNet is available at https://github.com/MrFang/xLSTM-VMUNet.
Via

Nov 04, 2024
Abstract:Nanorobots are a promising development in targeted drug delivery and the treatment of neurological disorders, with potential for crossing the blood-brain barrier (BBB). These small devices leverage advancements in nanotechnology and bioengineering for precise navigation and targeted payload delivery, particularly for conditions like brain tumors, Alzheimer's disease, and Parkinson's disease. Recent progress in artificial intelligence (AI) and machine learning (ML) has improved the navigation and effectiveness of nanorobots, allowing them to detect and interact with cancer cells through biomarker analysis. This study presents a new reinforcement learning (RL) framework for optimizing nanorobot navigation in complex biological environments, focusing on cancer cell detection by analyzing the concentration gradients of surrounding biomarkers. We utilize a computer simulation model to explore the behavior of nanorobots in a three-dimensional space with cancer cells and biological barriers. The proposed method uses Q-learning to refine movement strategies based on real-time biomarker concentration data, enabling nanorobots to autonomously navigate to cancerous tissues for targeted drug delivery. This research lays the groundwork for future laboratory experiments and clinical applications, with implications for personalized medicine and less invasive cancer treatments. The integration of intelligent nanorobots could revolutionize therapeutic strategies, reducing side effects and enhancing treatment effectiveness for cancer patients. Further research will investigate the practical deployment of these technologies in medical settings, aiming to unlock the full potential of nanorobotics in healthcare.
* The source code for this simulation is available on GitHub:
https://github.com/SHAHAB-K93/cancer-and-smart-nanorobot
Via

Dec 21, 2024
Abstract:Accurate detection and segmentation of gastrointestinal bleeding are critical for diagnosing diseases such as peptic ulcers and colorectal cancer. This study proposes a two-stage framework that decouples classification and grounding to address the inherent challenges posed by traditional Multi-Task Learning models, which jointly optimizes classification and segmentation. Our approach separates these tasks to achieve targeted optimization for each. The model first classifies images as bleeding or non-bleeding, thereby isolating subsequent grounding from inter-task interference and label heterogeneity. To further enhance performance, we incorporate Stochastic Weight Averaging and Test-Time Augmentation, which improve model robustness against domain shifts and annotation inconsistencies. Our method is validated on the Auto-WCEBleedGen Challenge V2 Challenge dataset and achieving second place. Experimental results demonstrate significant improvements in classification accuracy and segmentation precision, especially on sequential datasets with consistent visual patterns. This study highlights the practical benefits of a two-stage strategy for medical image analysis and sets a new standard for GI bleeding detection and segmentation. Our code is publicly available at this GitHub repository.
Via

Nov 28, 2024
Abstract:Self-supervised foundation models have recently been successfully extended to encode three-dimensional (3D) computed tomography (CT) images, with excellent performance across several downstream tasks, such as intracranial hemorrhage detection and lung cancer risk forecasting. However, as self-supervised models learn from complex data distributions, questions arise concerning whether these embeddings capture demographic information, such as age, sex, or race. Using the National Lung Screening Trial (NLST) dataset, which contains 3D CT images and demographic data, we evaluated a range of classifiers: softmax regression, linear regression, linear support vector machine, random forest, and decision tree, to predict sex, race, and age of the patients in the images. Our results indicate that the embeddings effectively encoded age and sex information, with a linear regression model achieving a root mean square error (RMSE) of 3.8 years for age prediction and a softmax regression model attaining an AUC of 0.998 for sex classification. Race prediction was less effective, with an AUC of 0.878. These findings suggest a detailed exploration into the information encoded in self-supervised learning frameworks is needed to help ensure fair, responsible, and patient privacy-protected healthcare AI.
* submitted to Radiology Cardiothoracic Imaging
Via

Dec 10, 2024
Abstract:Melanoma is the most deadly form of skin cancer. Tracking the evolution of nevi and detecting new lesions across the body is essential for the early detection of melanoma. Despite prior work on longitudinal tracking of skin lesions in 3D total body photography, there are still several challenges, including 1) low accuracy for finding correct lesion pairs across scans, 2) sensitivity to noisy lesion detection, and 3) lack of large-scale datasets with numerous annotated lesion pairs. We propose a framework that takes in a pair of 3D textured meshes, matches lesions in the context of total body photography, and identifies unmatchable lesions. We start by computing correspondence maps bringing the source and target meshes to a template mesh. Using these maps to define source/target signals over the template domain, we construct a flow field aligning the mapped signals. The initial correspondence maps are then refined by advecting forward/backward along the vector field. Finally, lesion assignment is performed using the refined correspondence maps. We propose the first large-scale dataset for skin lesion tracking with 25K lesion pairs across 198 subjects. The proposed method achieves a success rate of 89.9% (at 10 mm criterion) for all pairs of annotated lesions and a matching accuracy of 98.2% for subjects with more than 200 lesions.
Via

Dec 20, 2024
Abstract:Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide, with polyp removal being an effective early screening method. However, navigating the colon for thorough polyp detection poses significant challenges. To advance camera navigation in colonoscopy, we propose the Semantic Segmentation for Tools and Fold Edges in Colonoscopy (SegCol) Challenge. This challenge introduces a dataset from the EndoMapper repository, featuring manually annotated, pixel-level semantic labels for colon folds and endoscopic tools across selected frames from 96 colonoscopy videos. By providing fold edges as anatomical landmarks and depth discontinuity information from both fold and tool labels, the dataset is aimed to improve depth perception and localization methods. Hosted as part of the Endovis Challenge at MICCAI 2024, SegCol aims to drive innovation in colonoscopy navigation systems. Details are available at https://www.synapse.org/Synapse:syn54124209/wiki/626563, and code resources at https://github.com/surgical-vision/segcol_challenge .
* 4 pages, 1 figure. Dataset introduction for the SegCol Challenge at
MICCAI 2024. Full Challenge paper, including participant methods and
evaluation results, will be released soon
Via

Dec 25, 2024
Abstract:We present a novel method that extends the self-attention mechanism of a vision transformer (ViT) for more accurate object detection across diverse datasets. ViTs show strong capability for image understanding tasks such as object detection, segmentation, and classification. This is due in part to their ability to leverage global information from interactions among visual tokens. However, the self-attention mechanism in ViTs are limited because they do not allow visual tokens to exchange local or global information with neighboring features before computing global attention. This is problematic because tokens are treated in isolation when attending (matching) to other tokens, and valuable spatial relationships are overlooked. This isolation is further compounded by dot-product similarity operations that make tokens from different semantic classes appear visually similar. To address these limitations, we introduce two modifications to the traditional self-attention framework; a novel aggressive convolution pooling strategy for local feature mixing, and a new conceptual attention transformation to facilitate interaction and feature exchange between semantic concepts. Experimental results demonstrate that local and global information exchange among visual features before self-attention significantly improves performance on challenging object detection tasks and generalizes across multiple benchmark datasets and challenging medical datasets. We publish source code and a novel dataset of cancerous tumors (chimeric cell clusters).
* 20 Pages, 24 figures
Via

Dec 07, 2024
Abstract:Breast cancer stands as a prevalent cause of fatality among females on a global scale, with prompt detection playing a pivotal role in diminishing mortality rates. The utilization of ultrasound scans in the BUSI dataset for medical imagery pertaining to breast cancer has exhibited commendable segmentation outcomes through the application of UNet and UNet++ networks. Nevertheless, a notable drawback of these models resides in their inattention towards the temporal aspects embedded within the images. This research endeavors to enrich the UNet++ architecture by integrating LSTM layers and self-attention mechanisms to exploit temporal characteristics for segmentation purposes. Furthermore, the incorporation of a Multiscale Feature Extraction Module aims to grasp varied scale features within the UNet++. Through the amalgamation of our proposed methodology with data augmentation on the BUSI with GT dataset, an accuracy rate of 98.88%, specificity of 99.53%, precision of 95.34%, sensitivity of 91.20%, F1-score of 93.74, and Dice coefficient of 92.74% are achieved. These findings demonstrate competitiveness with cutting-edge techniques outlined in existing literature.
Via

Dec 03, 2024
Abstract:Colorectal polyps are structural abnormalities of the gastrointestinal tract that can potentially become cancerous in some cases. The study introduces a novel framework for colorectal polyp segmentation named the Multi-Scale and Multi-Path Cascaded Convolution Network (MMCC-Net), aimed at addressing the limitations of existing models, such as inadequate spatial dependence representation and the absence of multi-level feature integration during the decoding stage by integrating multi-scale and multi-path cascaded convolutional techniques and enhances feature aggregation through dual attention modules, skip connections, and a feature enhancer. MMCC-Net achieves superior performance in identifying polyp areas at the pixel level. The Proposed MMCC-Net was tested across six public datasets and compared against eight SOTA models to demonstrate its efficiency in polyp segmentation. The MMCC-Net's performance shows Dice scores with confidence intervals ranging between (77.08, 77.56) and (94.19, 94.71) and Mean Intersection over Union (MIoU) scores with confidence intervals ranging from (72.20, 73.00) to (89.69, 90.53) on the six databases. These results highlight the model's potential as a powerful tool for accurate and efficient polyp segmentation, contributing to early detection and prevention strategies in colorectal cancer.
* Alexandria Engineering Journal Volume 105, October 2024, Pages
341-359
Via
