Topic:Time Series Analysis
What is Time Series Analysis? Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Papers and Code
May 01, 2025
Abstract:Understanding how auditory stimuli influence emotional and physiological states is fundamental to advancing affective computing and mental health technologies. In this paper, we present a multimodal evaluation of the affective and physiological impacts of three auditory conditions, that is, spiritual meditation (SM), music (M), and natural silence (NS), using a comprehensive suite of biometric signal measures. To facilitate this analysis, we introduce the Spiritual, Music, Silence Acoustic Time Series (SMSAT) dataset, a novel benchmark comprising acoustic time series (ATS) signals recorded under controlled exposure protocols, with careful attention to demographic diversity and experimental consistency. To model the auditory induced states, we develop a contrastive learning based SMSAT audio encoder that extracts highly discriminative embeddings from ATS data, achieving 99.99% classification accuracy in interclass and intraclass evaluations. Furthermore, we propose the Calmness Analysis Model (CAM), a deep learning framework integrating 25 handcrafted and learned features for affective state classification across auditory conditions, attaining robust 99.99% classification accuracy. In contrast, pairwise t tests reveal significant deviations in cardiac response characteristics (CRC) between SM analysis via ANOVA inducing more significant physiological fluctuations. Compared to existing state of the art methods reporting accuracies up to 90%, the proposed model demonstrates substantial performance gains (up to 99%). This work contributes a validated multimodal dataset and a scalable deep learning framework for affective computing applications in stress monitoring, mental well-being, and therapeutic audio-based interventions.
Via

May 11, 2025
Abstract:Recent advances in artificial intelligence have highlighted the remarkable capabilities of neural network (NN)-powered systems on classical computers. However, these systems face significant computational challenges that limit scalability and efficiency. Quantum computers hold the potential to overcome these limitations and increase processing power beyond classical systems. Despite this, integrating quantum computing with NNs remains largely unrealized due to challenges posed by noise, decoherence, and high error rates in current quantum hardware. Here, we propose a novel quantum echo-state network (QESN) design and implementation algorithm that can operate within the presence of noise on current IBM hardware. We apply classical control-theoretic response analysis to characterize the QESN, emphasizing its rich nonlinear dynamics and memory, as well as its ability to be fine-tuned with sparsity and re-uploading blocks. We validate our approach through a comprehensive demonstration of QESNs functioning as quantum observers, applied in both high-fidelity simulations and hardware experiments utilizing data from a prototypical chaotic Lorenz system. Our results show that the QESN can predict long time-series with persistent memory, running over 100 times longer than the median T}1 and T2 of the IBM Marrakesh QPU, achieving state-of-the-art time-series performance on superconducting hardware.
* 14 pages, 12 figures
Via

Apr 18, 2025
Abstract:Financial prediction is a complex and challenging task of time series analysis and signal processing, expected to model both short-term fluctuations and long-term temporal dependencies. Transformers have remarkable success mostly in natural language processing using attention mechanism, which also influenced the time series community. The ability to capture both short and long-range dependencies helps to understand the financial market and to recognize price patterns, leading to successful applications of Transformers in stock prediction. Although, the previous research predominantly focuses on individual features and singular predictions, that limits the model's ability to understand broader market trends. In reality, within sectors such as finance and technology, companies belonging to the same industry often exhibit correlated stock price movements. In this paper, we develop a novel neural network architecture by integrating Time2Vec with the Encoder of the Transformer model. Based on the study of different markets, we propose a novel correlation feature selection method. Through a comprehensive fine-tuning of multiple hyperparameters, we conduct a comparative analysis of our results against benchmark models. We conclude that our method outperforms other state-of-the-art encoding methods such as positional encoding, and we also conclude that selecting correlation features enhance the accuracy of predicting multiple stock prices.
* 5 pages, currently under review at Eusipco 2025
Via

May 02, 2025
Abstract:Predicting the price that has the least error and can provide the best and highest accuracy has been one of the most challenging issues and one of the most critical concerns among capital market activists and researchers. Therefore, a model that can solve problems and provide results with high accuracy is one of the topics of interest among researchers. In this project, using time series prediction models such as ARIMA to estimate the price, variables, and indicators related to technical analysis show the behavior of traders involved in involving psychological factors for the model. By linking all of these variables to stepwise regression, we identify the best variables influencing the prediction of the variable. Finally, we enter the selected variables as inputs to the artificial neural network. In other words, we want to call this whole prediction process the "ARIMA_Stepwise Regression_Neural Network" model and try to predict the price of gold in international financial markets. This approach is expected to be able to be used to predict the types of stocks, commodities, currency pairs, financial market indicators, and other items used in local and international financial markets. Moreover, a comparison between the results of this method and time series methods is also expressed. Finally, based on the results, it can be seen that the resulting hybrid model has the highest accuracy compared to the time series method, regression, and stepwise regression.
Via

May 12, 2025
Abstract:Large Reasoning Models (LRMs) have the ability to self-correct even when they make mistakes in their reasoning paths. However, our study reveals that when the reasoning process starts with a short but poor beginning, it becomes difficult for the model to recover. We refer to this phenomenon as the "Prefix Dominance Trap". Inspired by psychological findings that peer interaction can promote self-correction without negatively impacting already accurate individuals, we propose **Learning from Peers** (LeaP) to address this phenomenon. Specifically, every tokens, each reasoning path summarizes its intermediate reasoning and shares it with others through a routing mechanism, enabling paths to incorporate peer insights during inference. However, we observe that smaller models sometimes fail to follow summarization and reflection instructions effectively. To address this, we fine-tune them into our **LeaP-T** model series. Experiments on AIME 2024, AIME 2025, AIMO 2025, and GPQA Diamond show that LeaP provides substantial improvements. For instance, QwQ-32B with LeaP achieves nearly 5 absolute points higher than the baseline on average, and surpasses DeepSeek-R1-671B on three math benchmarks with an average gain of 3.3 points. Notably, our fine-tuned LeaP-T-7B matches the performance of DeepSeek-R1-Distill-Qwen-14B on AIME 2024. In-depth analysis reveals LeaP's robust error correction by timely peer insights, showing strong error tolerance and handling varied task difficulty. LeaP marks a milestone by enabling LRMs to collaborate during reasoning. Our code, datasets, and models are available at https://learning-from-peers.github.io/ .
* 29 pages, 32 figures
Via

Apr 30, 2025
Abstract:This study explores the intersection of fashion trends and social media sentiment through computational analysis of Twitter data using the T4SA (Twitter for Sentiment Analysis) dataset. By applying natural language processing and machine learning techniques, we examine how sentiment patterns in fashion-related social media conversations can serve as predictors for emerging fashion trends. Our analysis involves the identification and categorization of fashion-related content, sentiment classification with improved normalization techniques, time series decomposition, statistically validated causal relationship modeling, cross-platform sentiment comparison, and brand-specific sentiment analysis. Results indicate correlations between sentiment patterns and fashion theme popularity, with accessories and streetwear themes showing statistically significant rising trends. The Granger causality analysis establishes sustainability and streetwear as primary trend drivers, showing bidirectional relationships with several other themes. The findings demonstrate that social media sentiment analysis can serve as an effective early indicator of fashion trend trajectories when proper statistical validation is applied. Our improved predictive model achieved 78.35% balanced accuracy in sentiment classification, establishing a reliable foundation for trend prediction across positive, neutral, and negative sentiment categories.
* 13 pages
Via

May 05, 2025
Abstract:Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
Via

May 05, 2025
Abstract:Taskmaster is a British television show that combines comedic performance with a formal scoring system. Despite the appearance of structured competition, it remains unclear whether scoring dynamics contribute meaningfully to audience engagement. We conducted a statistical analysis of 162 episodes across 18 series, using fifteen episode-level metrics to quantify rank volatility, point spread, lead changes, and winner dominance. None of these metrics showed a significant association with IMDb ratings, even after controlling for series effects. Long-term trends suggest that average points have increased over time, while volatility has slightly declined and rank spread has remained stable. These patterns indicate an attempt to enhance competitive visibility without altering the show's structural equilibrium. We also analyzed contestant rank trajectories and identified five recurring archetypes describing performance styles. These patterns suggest that viewer interest is shaped more by contestant behavior than by game mechanics.
* 29 pages, includes 5 figures and 18 supplementary visualizations.
Submitted as a preprint. Code and data available at github dot com slash
silverdavi slash taskmaster-stats
Via

May 04, 2025
Abstract:Since the advent of the ``Neural Ordinary Differential Equation (Neural ODE)'' paper, learning ODEs with deep learning has been applied to system identification, time-series forecasting, and related areas. Exploiting the diffeomorphic nature of ODE solution maps, neural ODEs has also enabled their use in generative modeling. Despite the rich potential to incorporate various kinds of physical information, training Neural ODEs remains challenging in practice. This study demonstrates, through the simplest one-dimensional linear model, why training Neural ODEs is difficult. We then propose a new stabilization method and provide an analytical convergence analysis. The insights and techniques presented here serve as a concise tutorial for researchers beginning work on Neural ODEs.
* Under review
Via

May 09, 2025
Abstract:The physical load of jumps plays a critical role in injury prevention for volleyball players. However, manual video analysis of jump activities is time-intensive and costly, requiring significant effort and expensive hardware setups. The advent of the inertial measurement unit (IMU) and machine learning algorithms offers a convenient and efficient alternative. Despite this, previous research has largely focused on either jump classification or physical load estimation, leaving a gap in integrated solutions. This study aims to present a pipeline to automatically detect jumps and predict heights using data from a waist-worn IMU. The pipeline leverages a Multi-Stage Temporal Convolutional Network (MS-TCN) to detect jump segments in time-series data and classify the specific jump category. Subsequently, jump heights are estimated using three downstream regression machine learning models based on the identified segments. Our method is verified on a dataset comprising 10 players and 337 jumps. Compared to the result of VERT in height estimation (R-squared=-1.53), a commercial device commonly used in jump landing tasks, our method not only accurately identifies jump activities and their specific types (F1-score=0.90) but also demonstrates superior performance in height prediction (R-squared=0.50). This integrated solution offers a promising tool for monitoring physical load and mitigating injury risk in volleyball players.
* submitted to EMBC conference 2025 (accepeted)
Via
