What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
Feb 10, 2025
Abstract:Social media has become a crucial open-access platform for individuals to express opinions and share experiences. However, leveraging low-resource language data from Twitter is challenging due to scarce, poor-quality content and the major variations in language use, such as slang and code-switching. Identifying tweets in these languages can be difficult as Twitter primarily supports high-resource languages. We analyze Kenyan code-switched data and evaluate four state-of-the-art (SOTA) transformer-based pretrained models for sentiment and emotion classification, using supervised and semi-supervised methods. We detail the methodology behind data collection and annotation, and the challenges encountered during the data curation phase. Our results show that XLM-R outperforms other models; for sentiment analysis, XLM-R supervised model achieves the highest accuracy (69.2\%) and F1 score (66.1\%), XLM-R semi-supervised (67.2\% accuracy, 64.1\% F1 score). In emotion analysis, DistilBERT supervised leads in accuracy (59.8\%) and F1 score (31\%), mBERT semi-supervised (accuracy (59\% and F1 score 26.5\%). AfriBERTa models show the lowest accuracy and F1 scores. All models tend to predict neutral sentiment, with Afri-BERT showing the highest bias and unique sensitivity to empathy emotion. https://github.com/NEtori21/Ride_hailing
* Proceedings of the 14th Workshop on Computational Approaches to
Subjectivity, Sentiment, & Social Media Analysis. Association for
Computational Linguistics, 2024
* Accepted in WASSA 2024
Via

Mar 17, 2025
Abstract:Visual perceptual tasks aim to predict human judgment of images (e.g., emotions invoked by images, image quality assessment). Unlike objective tasks such as object/scene recognition, perceptual tasks rely on subjective human assessments, making its data-labeling difficult. The scarcity of such human-annotated data results in small datasets leading to poor generalization. Typically, specialized models were designed for each perceptual task, tailored to its unique characteristics and its own training dataset. We propose a unified architectural framework for solving multiple different perceptual tasks leveraging CLIP as a prior. Our approach is based on recent cognitive findings which indicate that CLIP correlates well with human judgment. While CLIP was explicitly trained to align images and text, it implicitly also learned human inclinations. We attribute this to the inclusion of human-written image captions in CLIP's training data, which contain not only factual image descriptions, but inevitably also human sentiments and emotions. This makes CLIP a particularly strong prior for perceptual tasks. Accordingly, we suggest that minimal adaptation of CLIP suffices for solving a variety of perceptual tasks. Our simple unified framework employs a lightweight adaptation to fine-tune CLIP to each task, without requiring any task-specific architectural changes. We evaluate our approach on three tasks: (i) Image Memorability Prediction, (ii) No-reference Image Quality Assessment, and (iii) Visual Emotion Analysis. Our model achieves state-of-the-art results on all three tasks, while demonstrating improved generalization across different datasets.
Via

Feb 06, 2025
Abstract:Multilingual language models have significantly advanced due to rapid progress in natural language processing. Models like BLOOM 1.7B, trained on diverse multilingual datasets, aim to bridge linguistic gaps. However, their effectiveness in capturing linguistic knowledge, particularly for low-resource languages, remains an open question. This study critically examines MLMs capabilities in multilingual understanding, semantic representation, and cross-lingual knowledge transfer. While these models perform well for high-resource languages, they struggle with less-represented ones. Additionally, traditional evaluation methods often overlook their internal syntactic and semantic encoding. This research addresses key limitations through three objectives. First, it assesses semantic similarity by analyzing multilingual word embeddings for consistency using cosine similarity. Second, it examines BLOOM-1.7B and Qwen2 through Named Entity Recognition and sentence similarity tasks to understand their linguistic structures. Third, it explores cross-lingual knowledge transfer by evaluating generalization from high-resource to low-resource languages in sentiment analysis and text classification. By leveraging linguistic probing, performance metrics, and visualizations, this study provides insights into the strengths and limitations of MLMs. The findings aim to enhance multilingual NLP models, ensuring better support for both high- and low-resource languages, thereby promoting inclusivity in language technologies.
* 10 pages, 8 figures
Via

Feb 10, 2025
Abstract:Insider threats wield an outsized influence on organizations, disproportionate to their small numbers. This is due to the internal access insiders have to systems, information, and infrastructure. %One example of this influence is where anonymous respondents submit web-based job search site reviews, an insider threat risk to organizations. Signals for such risks may be found in anonymous submissions to public web-based job search site reviews. This research studies the potential for large language models (LLMs) to analyze and detect insider threat sentiment within job site reviews. Addressing ethical data collection concerns, this research utilizes synthetic data generation using LLMs alongside existing job review datasets. A comparative analysis of sentiment scores generated by LLMs is benchmarked against expert human scoring. Findings reveal that LLMs demonstrate alignment with human evaluations in most cases, thus effectively identifying nuanced indicators of threat sentiment. The performance is lower on human-generated data than synthetic data, suggesting areas for improvement in evaluating real-world data. Text diversity analysis found differences between human-generated and LLM-generated datasets, with synthetic data exhibiting somewhat lower diversity. Overall, the results demonstrate the applicability of LLMs to insider threat detection, and a scalable solution for insider sentiment testing by overcoming ethical and logistical barriers tied to data acquisition.
* 6 pages, 0 figures, 8 tables
Via

Feb 11, 2025
Abstract:This research explores the opportunities of Generative AI (GenAI) in the realm of higher education through the design and development of a multimodal chatbot for an undergraduate course. Leveraging the ChatGPT API for nuanced text-based interactions and Google Bard for advanced image analysis and diagram-to-code conversions, we showcase the potential of GenAI in addressing a broad spectrum of educational queries. Additionally, the chatbot presents a file-based analyser designed for educators, offering deep insights into student feedback via sentiment and emotion analysis, and summarising course evaluations with key metrics. These combinations highlight the crucial role of multimodal conversational AI in enhancing teaching and learning processes, promising significant advancements in educational adaptability, engagement, and feedback analysis. By demonstrating a practical web application, this research underlines the imperative for integrating GenAI technologies to foster more dynamic and responsive educational environments, ultimately contributing to improved educational outcomes and pedagogical strategies.
* 9 pages, 4 figures, accepted and presented in the 2025 6th
International Conference on Advances in Education and Information Technology
(AEIT)
Via

Feb 20, 2025
Abstract:Information in text is communicated in a way that supports a goal for its reader. Product reviews, for example, contain opinions, tips, product descriptions, and many other types of information that provide both direct insights, as well as unexpected signals for downstream applications. We devise a typology of 24 communicative goals in sentences from the product review domain, and employ a zero-shot multi-label classifier that facilitates large-scale analyses of review data. In our experiments, we find that the combination of classes in the typology forecasts helpfulness and sentiment of reviews, while supplying explanations for these decisions. In addition, our typology enables analysis of review intent, effectiveness and rhetorical structure. Characterizing the types of information in reviews unlocks many opportunities for more effective consumption of this genre.
Via

Feb 23, 2025
Abstract:Rumours in online social media pose significant risks to modern society, motivating the need for better understanding of how they develop. We focus specifically on the interface between emotion and rumours in threaded discourses, building on the surprisingly sparse literature on the topic which has largely focused on emotions within the original rumour posts themselves, and largely overlooked the comparative differences between rumours and non-rumours. In this work, we provide a comprehensive analytical emotion framework, contrasting rumour and non-rumour cases using existing NLP datasets to further understand the emotion dynamics within rumours. Our framework reveals several findings: rumours exhibit more negative sentiment and emotions, including anger, fear and pessimism, while non-rumours evoke more positive emotions; emotions are contagious in online interactions, with rumours facilitate negative emotions and non-rumours foster positive emotions; and based on causal analysis, surprise acts as a bridge between rumours and other emotions, pessimism is driven by sadness and fear, optimism by joy and love.
* 11 pages, 10 figures
Via

Feb 17, 2025
Abstract:Personalized dialogue systems have advanced considerably with the integration of user-specific personas into large language models (LLMs). However, while LLMs can effectively generate personalized responses, the influence of persona sentiment on dialogue quality remains underexplored. In this work, we conduct a large-scale analysis of dialogues generated using a range of polarized user profiles. Our experiments reveal that dialogues involving negatively polarized users tend to overemphasize persona attributes, leading to increased entailment and contradiction instances and lower overall coherence. In contrast, positively polarized profiles yield dialogues that selectively incorporate persona information, resulting in smoother and more coherent interactions. Furthermore, we find that personas with weak or neutral sentiment generally produce lower-quality dialogues. Motivated by these findings, we propose a dialogue generation approach that explicitly accounts for persona polarity by combining a turn-based generation strategy with a profile ordering mechanism. Our study provides new insights into the sensitivity of LLMs to persona sentiment and offers guidance for developing more robust and nuanced personalized dialogue systems.
* 19 pages, 8 figures
Via

Feb 25, 2025
Abstract:The extraction of information from semi-structured text, such as resumes, has long been a challenge due to the diverse formatting styles and subjective content organization. Conventional solutions rely on specialized logic tailored for specific use cases. However, we propose a revolutionary approach leveraging structured Graphs, Natural Language Processing (NLP), and Deep Learning. By abstracting intricate logic into Graph structures, we transform raw data into a comprehensive Knowledge Graph. This innovative framework enables precise information extraction and sophisticated querying. We systematically construct dictionaries assigning skill weights, paving the way for nuanced talent analysis. Our system not only benefits job recruiters and curriculum designers but also empowers job seekers with targeted query-based filtering and ranking capabilities.
* Arai, K. (eds) Intelligent Computing. SAI 2024. Lecture Notes in
Networks and Systems, vol 1018. Springer
Via

Mar 04, 2025
Abstract:The #StopAsianHate (SAH) movement is a broad social movement against violence targeting Asians and Asian Americans, beginning in 2021 in response to racial discrimination related to COVID-19 and sparking worldwide conversation about anti-Asian hate. However, research on the online SAH movement has focused on English-speaking participants so the spread of the movement outside of the United States is largely unknown. In addition, there have been no long-term studies of SAH so the extent to which it has been successfully sustained over time is not well understood. We present an analysis of 6.5 million "#StopAsianHate" tweets from 2.2 million users all over the globe and spanning 60 different languages, constituting the first study of the non-English and transnational component of the online SAH movement. Using a combination of topic modeling, user modeling, and hand annotation, we identify and characterize the dominant discussions and users participating in the movement and draw comparisons of English versus non-English topics and users. We discover clear differences in events driving topics, where spikes in English tweets are driven by violent crimes in the US but spikes in non-English tweets are driven by transnational incidents of anti-Asian sentiment towards symbolic representatives of Asian nations. We also find that global K-pop fans were quick to adopt the SAH movement and, in fact, sustained it for longer than any other user group. Our work contributes to understanding the transnationality and evolution of the SAH movement, and more generally to exploring upward scale shift and public attention in large-scale multilingual online activism.
* WebSci'25
Via
