Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

A Systematic Analysis on the Impact of Contextual Information on Point-of-Interest Recommendation

Jan 20, 2022
Hossein A. Rahmani, Mohammad Aliannejadi, Mitra Baratchi, Fabio Crestani

As the popularity of Location-based Social Networks (LBSNs) increases, designing accurate models for Point-of-Interest (POI) recommendation receives more attention. POI recommendation is often performed by incorporating contextual information into previously designed recommendation algorithms. Some of the major contextual information that has been considered in POI recommendation are the location attributes (i.e., exact coordinates of a location, category, and check-in time), the user attributes (i.e., comments, reviews, tips, and check-in made to the locations), and other information, such as the distance of the POI from user's main activity location, and the social tie between users. The right selection of such factors can significantly impact the performance of the POI recommendation. However, previous research does not consider the impact of the combination of these different factors. In this paper, we propose different contextual models and analyze the fusion of different major contextual information in POI recommendation. The major contributions of this paper are: (i) providing an extensive survey of context-aware location recommendation (ii) quantifying and analyzing the impact of different contextual information (e.g., social, temporal, spatial, and categorical) in the POI recommendation on available baselines and two new linear and non-linear models, that can incorporate all the major contextual information into a single recommendation model, and (iii) evaluating the considered models using two well-known real-world datasets. Our results indicate that while modeling geographical and temporal influences can improve recommendation quality, fusing all other contextual information into a recommendation model is not always the best strategy.

* To appear in ACM TOIS 

  Access Paper or Ask Questions

CRTS: A type system for representing clinical recommendations

Sep 06, 2016
Ravi P Garg, Kalpana Raja, Siddhartha R Jonnalagadda

Background: Clinical guidelines and recommendations are the driving wheels of the evidence-based medicine (EBM) paradigm, but these are available primarily as unstructured text and are generally highly heterogeneous in nature. This significantly reduces the dissemination and automatic application of these recommendations at the point of care. A comprehensive structured representation of these recommendations is highly beneficial in this regard. Objective: The objective of this paper to present Clinical Recommendation Type System (CRTS), a common type system that can effectively represent a clinical recommendation in a structured form. Methods: CRTS is built by analyzing 125 recommendations and 195 research articles corresponding to 6 different diseases available from UpToDate, a publicly available clinical knowledge system, and from the National Guideline Clearinghouse, a public resource for evidence-based clinical practice guidelines. Results: We show that CRTS not only covers the recommendations but also is flexible to be extended to represent information from primary literature. We also describe how our developed type system can be applied for clinical decision support, medical knowledge summarization, and citation retrieval. Conclusion: We showed that our proposed type system is precise and comprehensive in representing a large sample of recommendations available for various disorders. CRTS can now be used to build interoperable information extraction systems that automatically extract clinical recommendations and related data elements from clinical evidence resources, guidelines, systematic reviews and primary publications. Keywords: guidelines and recommendations, type system, clinical decision support, evidence-based medicine, information storage and retrieval


  Access Paper or Ask Questions

Causal Intervention for Leveraging Popularity Bias in Recommendation

May 13, 2021
Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui Ling, Yongdong Zhang

Recommender system usually faces popularity bias issues: from the data perspective, items exhibit uneven (long-tail) distribution on the interaction frequency; from the method perspective, collaborative filtering methods are prone to amplify the bias by over-recommending popular items. It is undoubtedly critical to consider popularity bias in recommender systems, and existing work mainly eliminates the bias effect. However, we argue that not all biases in the data are bad -- some items demonstrate higher popularity because of their better intrinsic quality. Blindly pursuing unbiased learning may remove the beneficial patterns in the data, degrading the recommendation accuracy and user satisfaction. This work studies an unexplored problem in recommendation -- how to leverage popularity bias to improve the recommendation accuracy. The key lies in two aspects: how to remove the bad impact of popularity bias during training, and how to inject the desired popularity bias in the inference stage that generates top-K recommendations. This questions the causal mechanism of the recommendation generation process. Along this line, we find that item popularity plays the role of confounder between the exposed items and the observed interactions, causing the bad effect of bias amplification. To achieve our goal, we propose a new training and inference paradigm for recommendation named Popularity-bias Deconfounding and Adjusting (PDA). It removes the confounding popularity bias in model training and adjusts the recommendation score with desired popularity bias via causal intervention. We demonstrate the new paradigm on latent factor model and perform extensive experiments on three real-world datasets. Empirical studies validate that the deconfounded training is helpful to discover user real interests and the inference adjustment with popularity bias could further improve the recommendation accuracy.

* Appear in SIGIR 2021 

  Access Paper or Ask Questions

Conditional Generation Net for Medication Recommendation

Feb 18, 2022
Rui Wu, Zhaopeng Qiu, Jiacheng Jiang, Guilin Qi, Xian Wu

Medication recommendation targets to provide a proper set of medicines according to patients' diagnoses, which is a critical task in clinics. Currently, the recommendation is manually conducted by doctors. However, for complicated cases, like patients with multiple diseases at the same time, it's difficult to propose a considerate recommendation even for experienced doctors. This urges the emergence of automatic medication recommendation which can help treat the diagnosed diseases without causing harmful drug-drug interactions.Due to the clinical value, medication recommendation has attracted growing research interests.Existing works mainly formulate medication recommendation as a multi-label classification task to predict the set of medicines. In this paper, we propose the Conditional Generation Net (COGNet) which introduces a novel copy-or-predict mechanism to generate the set of medicines. Given a patient, the proposed model first retrieves his or her historical diagnoses and medication recommendations and mines their relationship with current diagnoses. Then in predicting each medicine, the proposed model decides whether to copy a medicine from previous recommendations or to predict a new one. This process is quite similar to the decision process of human doctors. We validate the proposed model on the public MIMIC data set, and the experimental results show that the proposed model can outperform state-of-the-art approaches.

* 11 pages. To be published at The Web Conference 2022 (WWW 2022) 

  Access Paper or Ask Questions

Causality-Aware Neighborhood Methods for Recommender Systems

Dec 17, 2020
Masahiro Sato, Sho Takemori, Janmajay Singh, Qian Zhang

The business objectives of recommenders, such as increasing sales, are aligned with the causal effect of recommendations. Previous recommenders targeting for the causal effect employ the inverse propensity scoring (IPS) in causal inference. However, IPS is prone to suffer from high variance. The matching estimator is another representative method in causal inference field. It does not use propensity and hence free from the above variance problem. In this work, we unify traditional neighborhood recommendation methods with the matching estimator, and develop robust ranking methods for the causal effect of recommendations. Our experiments demonstrate that the proposed methods outperform various baselines in ranking metrics for the causal effect. The results suggest that the proposed methods can achieve more sales and user engagement than previous recommenders.

* accepted at ECIR 2021 

  Access Paper or Ask Questions

DeepFair: Deep Learning for Improving Fairness in Recommender Systems

Jun 09, 2020
Jesús Bobadilla, Raúl Lara-Cabrera, Ángel González-Prieto, Fernando Ortega

The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations. Moreover, the trade-off between equity and precision makes it difficult to obtain recommendations that meet both criteria. Here we propose a Deep Learning based Collaborative Filtering algorithm that provides recommendations with an optimum balance between fairness and accuracy without knowing demographic information about the users. Experimental results show that it is possible to make fair recommendations without losing a significant proportion of accuracy.

* 18 pages, 9 figures, 4 tables 

  Access Paper or Ask Questions

Recommendation with k-anonymized Ratings

Jun 06, 2017
Jun Sakuma, Tatsuya Osame

Recommender systems are widely used to predict personalized preferences of goods or services using users' past activities, such as item ratings or purchase histories. If collections of such personal activities were made publicly available, they could be used to personalize a diverse range of services, including targeted advertisement or recommendations. However, there would be an accompanying risk of privacy violations. The pioneering work of Narayanan et al.\ demonstrated that even if the identifiers are eliminated, the public release of user ratings can allow for the identification of users by those who have only a small amount of data on the users' past ratings. In this paper, we assume the following setting. A collector collects user ratings, then anonymizes and distributes them. A recommender constructs a recommender system based on the anonymized ratings provided by the collector. Based on this setting, we exhaustively list the models of recommender systems that use anonymized ratings. For each model, we then present an item-based collaborative filtering algorithm for making recommendations based on anonymized ratings. Our experimental results show that an item-based collaborative filtering based on anonymized ratings can perform better than collaborative filterings based on 5--10 non-anonymized ratings. This surprising result indicates that, in some settings, privacy protection does not necessarily reduce the usefulness of recommendations. From the experimental analysis of this counterintuitive result, we observed that the sparsity of the ratings can be reduced by anonymization and the variance of the prediction can be reduced if $k$, the anonymization parameter, is appropriately tuned. In this way, the predictive performance of recommendations based on anonymized ratings can be improved in some settings.


  Access Paper or Ask Questions

Explainable Recommendation via Multi-Task Learning in Opinionated Text Data

Jun 10, 2018
Nan Wang, Hongning Wang, Yiling Jia, Yue Yin

Explaining automatically generated recommendations allows users to make more informed and accurate decisions about which results to utilize, and therefore improves their satisfaction. In this work, we develop a multi-task learning solution for explainable recommendation. Two companion learning tasks of user preference modeling for recommendation} and \textit{opinionated content modeling for explanation are integrated via a joint tensor factorization. As a result, the algorithm predicts not only a user's preference over a list of items, i.e., recommendation, but also how the user would appreciate a particular item at the feature level, i.e., opinionated textual explanation. Extensive experiments on two large collections of Amazon and Yelp reviews confirmed the effectiveness of our solution in both recommendation and explanation tasks, compared with several existing recommendation algorithms. And our extensive user study clearly demonstrates the practical value of the explainable recommendations generated by our algorithm.

* 10 pages, SIGIR 2018 

  Access Paper or Ask Questions

Graph Embedding for Recommendation against Attribute Inference Attacks

Jan 29, 2021
Shijie Zhang, Hongzhi Yin, Tong Chen, Zi Huang, Lizhen Cui, Xiangliang Zhang

In recent years, recommender systems play a pivotal role in helping users identify the most suitable items that satisfy personal preferences. As user-item interactions can be naturally modelled as graph-structured data, variants of graph convolutional networks (GCNs) have become a well-established building block in the latest recommenders. Due to the wide utilization of sensitive user profile data, existing recommendation paradigms are likely to expose users to the threat of privacy breach, and GCN-based recommenders are no exception. Apart from the leakage of raw user data, the fragility of current recommenders under inference attacks offers malicious attackers a backdoor to estimate users' private attributes via their behavioral footprints and the recommendation results. However, little attention has been paid to developing recommender systems that can defend such attribute inference attacks, and existing works achieve attack resistance by either sacrificing considerable recommendation accuracy or only covering specific attack models or protected information. In our paper, we propose GERAI, a novel differentially private graph convolutional network to address such limitations. Specifically, in GERAI, we bind the information perturbation mechanism in differential privacy with the recommendation capability of graph convolutional networks. Furthermore, based on local differential privacy and functional mechanism, we innovatively devise a dual-stage encryption paradigm to simultaneously enforce privacy guarantee on users' sensitive features and the model optimization process. Extensive experiments show the superiority of GERAI in terms of its resistance to attribute inference attacks and recommendation effectiveness.


  Access Paper or Ask Questions

<<
9
10
11
12
13
14
15
16
17
18
19
20
21
>>