Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Optimizing national scientific investment requires a clear understanding of evolving research trends and the demographic and geographical forces shaping them, particularly in light of commitments to equity, diversity, and inclusion. This study addresses this need by analyzing 18 years (2005-2022) of research proposals funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). We conducted a comprehensive comparative evaluation of three topic modelling approaches: Latent Dirichlet Allocation (LDA), Structural Topic Modelling (STM), and BERTopic. We also introduced a novel algorithm, named COFFEE, designed to enable robust covariate effect estimation for BERTopic. This advancement addresses a significant gap, as BERTopic lacks a native function for covariate analysis, unlike the probabilistic STM. Our findings highlight that while all models effectively delineate core scientific domains, BERTopic outperformed by consistently identifying more granular, coherent, and emergent themes, such as the rapid expansion of artificial intelligence. Additionally, the covariate analysis, powered by COFFEE, confirmed distinct provincial research specializations and revealed consistent gender-based thematic patterns across various scientific disciplines. These insights offer a robust empirical foundation for funding organizations to formulate more equitable and impactful funding strategies, thereby enhancing the effectiveness of the scientific ecosystem.




Continual learning is an emerging topic in the field of deep learning, where a model is expected to learn continuously for new upcoming tasks without forgetting previous experiences. This field has witnessed numerous advancements, but few works have been attempted in the direction of image restoration. Handling large image sizes and the divergent nature of various degradation poses a unique challenge in the restoration domain. However, existing works require heavily engineered architectural modifications for new task adaptation, resulting in significant computational overhead. Regularization-based methods are unsuitable for restoration, as different restoration challenges require different kinds of feature processing. In this direction, we propose a simple modification of the convolution layer to adapt the knowledge from previous restoration tasks without touching the main backbone architecture. Therefore, it can be seamlessly applied to any deep architecture without any structural modifications. Unlike other approaches, we demonstrate that our model can increase the number of trainable parameters without significantly increasing computational overhead or inference time. Experimental validation demonstrates that new restoration tasks can be introduced without compromising the performance of existing tasks. We also show that performance on new restoration tasks improves by adapting the knowledge from the knowledge base created by previous restoration tasks. The code is available at https://github.com/aupendu/continual-restore.
Large Language Models (LLMs) are increasingly deployed in sensitive domains including healthcare, legal services, and confidential communications, where privacy is paramount. This paper introduces Whisper Leak, a side-channel attack that infers user prompt topics from encrypted LLM traffic by analyzing packet size and timing patterns in streaming responses. Despite TLS encryption protecting content, these metadata patterns leak sufficient information to enable topic classification. We demonstrate the attack across 28 popular LLMs from major providers, achieving near-perfect classification (often >98% AUPRC) and high precision even at extreme class imbalance (10,000:1 noise-to-target ratio). For many models, we achieve 100% precision in identifying sensitive topics like "money laundering" while recovering 5-20% of target conversations. This industry-wide vulnerability poses significant risks for users under network surveillance by ISPs, governments, or local adversaries. We evaluate three mitigation strategies - random padding, token batching, and packet injection - finding that while each reduces attack effectiveness, none provides complete protection. Through responsible disclosure, we have collaborated with providers to implement initial countermeasures. Our findings underscore the need for LLM providers to address metadata leakage as AI systems handle increasingly sensitive information.
Vertex hunting (VH) is the task of estimating a simplex from noisy data points and has many applications in areas such as network and text analysis. We introduce a new variant, semi-supervised vertex hunting (SSVH), in which partial information is available in the form of barycentric coordinates for some data points, known only up to an unknown transformation. To address this problem, we develop a method that leverages properties of orthogonal projection matrices, drawing on novel insights from linear algebra. We establish theoretical error bounds for our method and demonstrate that it achieves a faster convergence rate than existing unsupervised VH algorithms. Finally, we apply SSVH to two practical settings, semi-supervised network mixed membership estimation and semi-supervised topic modeling, resulting in efficient and scalable algorithms.
With rapid urbanization in the modern era, traffic signals from various sensors have been playing a significant role in monitoring the states of cities, which provides a strong foundation in ensuring safe travel, reducing traffic congestion and optimizing urban mobility. Most existing methods for traffic signal modeling often rely on the original data modality, i.e., numerical direct readings from the sensors in cities. However, this unimodal approach overlooks the semantic information existing in multimodal heterogeneous urban data in different perspectives, which hinders a comprehensive understanding of traffic signals and limits the accurate prediction of complex traffic dynamics. To address this problem, we propose a novel Multimodal framework, MTP, for urban Traffic Profiling, which learns multimodal features through numeric, visual, and textual perspectives. The three branches drive for a multimodal perspective of urban traffic signal learning in the frequency domain, while the frequency learning strategies delicately refine the information for extraction. Specifically, we first conduct the visual augmentation for the traffic signals, which transforms the original modality into frequency images and periodicity images for visual learning. Also, we augment descriptive texts for the traffic signals based on the specific topic, background information and item description for textual learning. To complement the numeric information, we utilize frequency multilayer perceptrons for learning on the original modality. We design a hierarchical contrastive learning on the three branches to fuse the spectrum of three modalities. Finally, extensive experiments on six real-world datasets demonstrate superior performance compared with the state-of-the-art approaches.
Understanding how well large language models can follow users' instructions throughout a dialogue spanning multiple topics is of great importance for data-intensive conversational applications. Existing benchmarks are often limited to a fixed number of turns, making them susceptible to saturation and failing to account for the user's interactive experience. In this work, we propose an extensible framework for assessing multi-turn instruction-following ability. At its core, our framework decouples linguistic surface forms from user intent simulation through a three-layer mechanism that tracks constraints, instructions, and topics. This framework mimics User-LLM interaction by enabling the dynamic construction of benchmarks with state changes and tracebacks, terminating a conversation only when the model exhausts a simulated user's patience. We define a suite of metrics capturing the quality of the interaction process. Using this framework, we construct EvolIF, an evolving instruction-following benchmark incorporating nine distinct constraint types. Our results indicate that GPT-5 exhibits superior instruction-following performance. It sustains an average of 18.54 conversational turns and demonstrates 70.31% robustness, outperforming Gemini-2.5-Pro by a significant margin of 11.41%, while other models lag far behind. All of the data and code will be made publicly available online.

Amid the growing prevalence of human -- AI interaction, large language models and other AI-based entities increasingly provide forms of companionship to human users. Such AI companionship -- i.e., bonded relationships between humans and AI systems that resemble the relationships people have with family members, friends, and romantic partners -- might substantially benefit humans. Yet such relationships can also do profound harm. We propose a framework for analyzing potential negative impacts of AI companionship by identifying specific harmful traits of AI companions and speculatively mapping causal pathways back from these traits to possible causes and forward to potential harmful effects. We provide detailed, structured analysis of four potentially harmful traits -- the absence of natural endpoints for relationships, vulnerability to product sunsetting, high attachment anxiety, and propensity to engender protectiveness -- and briefly discuss fourteen others. For each trait, we propose hypotheses connecting causes -- such as misaligned optimization objectives and the digital nature of AI companions -- to fundamental harms -- including reduced autonomy, diminished quality of human relationships, and deception. Each hypothesized causal connection identifies a target for potential empirical evaluation. Our analysis examines harms at three levels: to human partners directly, to their relationships with other humans, and to society broadly. We examine how existing law struggles to address these emerging harms, discuss potential benefits of AI companions, and conclude with design recommendations for mitigating risks. This analysis offers immediate suggestions for reducing risks while laying a foundation for deeper investigation of this critical but understudied topic.




We target passive dementia screening from short camera-facing talking head video, developing a facial temporal micro dynamics analysis for language free detection of early neuro cognitive change. This enables unscripted, in the wild video analysis at scale to capture natural facial behaviors, transferrable across devices, topics, and cultures without active intervention by clinicians or researchers during recording. Most existing resources prioritize speech or scripted interviews, limiting use outside clinics and coupling predictions to language and transcription. In contrast, we identify and analyze whether temporal facial kinematics, including blink dynamics, small mouth jaw motions, gaze variability, and subtle head adjustments, are sufficient for dementia screening without speech or text. By stabilizing facial signals, we convert these micro movements into interpretable facial microdynamic time series, smooth them, and summarize short windows into compact clip level statistics for screening. Each window is encoded by its activity mix (the relative share of motion across streams), thus the predictor analyzes the distribution of motion across streams rather than its magnitude, making per channel effects transparent. We also introduce YT DemTalk, a new dataset curated from publicly available, in the wild camera facing videos. It contains 300 clips (150 with self reported dementia, 150 controls) to test our model and offer a first benchmarking of the corpus. On YT DemTalk, ablations identify gaze lability and mouth/jaw dynamics as the most informative cues, and light weighted shallow classifiers could attain a dementia prediction performance of (AUROC) 0.953, 0.961 Average Precision (AP), 0.851 F1-score, and 0.857 accuracy.
To serve global users safely and productively, LLMs need culture-specific knowledge that might not be learned during pre-training. How do we find such knowledge that is (1) salient to in-group users, but (2) unknown to LLMs? The most common solutions are single-initiative: either researchers define challenging questions that users passively answer (traditional annotation), or users actively produce data that researchers structure as benchmarks (knowledge extraction). The process would benefit from mixed-initiative collaboration, where users guide the process to meaningfully reflect their cultures, and LLMs steer the process towards more challenging questions that meet the researcher's goals. We propose a mixed-initiative methodology called CultureCartography. Here, an LLM initializes annotation with questions for which it has low-confidence answers, making explicit both its prior knowledge and the gaps therein. This allows a human respondent to fill these gaps and steer the model towards salient topics through direct edits. We implement this methodology as a tool called CultureExplorer. Compared to a baseline where humans answer LLM-proposed questions, we find that CultureExplorer more effectively produces knowledge that leading models like DeepSeek R1 and GPT-4o are missing, even with web search. Fine-tuning on this data boosts the accuracy of Llama-3.1-8B by up to 19.2% on related culture benchmarks.
Group Activity Recognition (GAR) is well studied on the video modality for surveillance and indoor team sports (e.g., volleyball, basketball). Yet, other modalities such as agent positions and trajectories over time, i.e. tracking, remain comparatively under-explored despite being compact, agent-centric signals that explicitly encode spatial interactions. Understanding whether pixel (video) or position (tracking) modalities leads to better group activity recognition is therefore important to drive further research on the topic. However, no standardized benchmark currently exists that aligns broadcast video and tracking data for the same group activities, leading to a lack of apples-to-apples comparison between these modalities for GAR. In this work, we introduce SoccerNet-GAR, a multimodal dataset built from the $64$ matches of the football World Cup 2022. Specifically, the broadcast videos and player tracking modalities for $94{,}285$ group activities are synchronized and annotated with $10$ categories. Furthermore, we define a unified evaluation protocol to benchmark two strong unimodal approaches: (i) a competitive video-based classifiers and (ii) a tracking-based classifiers leveraging graph neural networks. In particular, our novel role-aware graph architecture for tracking-based GAR directly encodes tactical structure through positional edges and temporal attention. Our tracking model achieves $67.2\%$ balanced accuracy compared to $58.1\%$ for the best video baseline, while training $4.25 \times$ faster with $438 \times$ fewer parameters ($197K$ \vs $86.3M$). This study provides new insights into the relative strengths of pixels and positions for group activity recognition. Overall, it highlights the importance of modality choice and role-aware modeling for GAR.