What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Sep 04, 2025
Abstract:In this study, we conduct a resume-screening experiment (N=528) where people collaborate with simulated AI models exhibiting race-based preferences (bias) to evaluate candidates for 16 high and low status occupations. Simulated AI bias approximates factual and counterfactual estimates of racial bias in real-world AI systems. We investigate people's preferences for White, Black, Hispanic, and Asian candidates (represented through names and affinity groups on quality-controlled resumes) across 1,526 scenarios and measure their unconscious associations between race and status using implicit association tests (IATs), which predict discriminatory hiring decisions but have not been investigated in human-AI collaboration. When making decisions without AI or with AI that exhibits no race-based preferences, people select all candidates at equal rates. However, when interacting with AI favoring a particular group, people also favor those candidates up to 90% of the time, indicating a significant behavioral shift. The likelihood of selecting candidates whose identities do not align with common race-status stereotypes can increase by 13% if people complete an IAT before conducting resume screening. Finally, even if people think AI recommendations are low quality or not important, their decisions are still vulnerable to AI bias under certain circumstances. This work has implications for people's autonomy in AI-HITL scenarios, AI and work, design and evaluation of AI hiring systems, and strategies for mitigating bias in collaborative decision-making tasks. In particular, organizational and regulatory policy should acknowledge the complex nature of AI-HITL decision making when implementing these systems, educating people who use them, and determining which are subject to oversight.
* Published in Proceedings of the 2025 AAAI/ACM Conference on AI,
Ethics, and Society; code available at
https://github.com/kyrawilson/No-Thoughts-Just-AI
Via

Sep 04, 2025
Abstract:With the dynamic evolution of user interests and the increasing multimodal demands in internet applications, personalized content generation strategies based on static interest preferences struggle to meet practical application requirements. The proposed TIMGen (Temporal Interest-driven Multimodal Generation) model addresses this challenge by modeling the long-term temporal evolution of users' interests and capturing dynamic interest representations with strong temporal dependencies. This model also supports the fusion of multimodal features, such as text, images, video, and audio, and delivers customized content based on multimodal preferences. TIMGen jointly learns temporal dependencies and modal preferences to obtain a unified interest representation, which it then generates to meet users' personalized content needs. TIMGen overcomes the shortcomings of personalized content recommendation methods based on static preferences, enabling flexible and dynamic modeling of users' multimodal interests, better understanding and capturing their interests and preferences. It can be extended to a variety of practical application scenarios, including e-commerce, advertising, online education, and precision medicine, providing insights for future research.
Via

Sep 04, 2025
Abstract:The growing capabilities of Large Language Models (LLMs) show significant potential to enhance healthcare by assisting medical researchers and physicians. However, their reliance on static training data is a major risk when medical recommendations evolve with new research and developments. When LLMs memorize outdated medical knowledge, they can provide harmful advice or fail at clinical reasoning tasks. To investigate this problem, we introduce two novel question-answering (QA) datasets derived from systematic reviews: MedRevQA (16,501 QA pairs covering general biomedical knowledge) and MedChangeQA (a subset of 512 QA pairs where medical consensus has changed over time). Our evaluation of eight prominent LLMs on the datasets reveals consistent reliance on outdated knowledge across all models. We additionally analyze the influence of obsolete pre-training data and training strategies to explain this phenomenon and propose future directions for mitigation, laying the groundwork for developing more current and reliable medical AI systems.
* Accepted to Findings of EMNLP 2025
Via

Sep 04, 2025
Abstract:The widespread adoption of Kubernetes (K8s) for orchestrating cloud-native applications has introduced significant security challenges, such as misconfigured resources and overly permissive configurations. Failing to address these issues can result in unauthorized access, privilege escalation, and lateral movement within clusters. Most existing K8s security solutions focus on detecting misconfigurations, typically through static analysis or anomaly detection. In contrast, this paper presents KubeGuard, a novel runtime log-driven recommender framework aimed at mitigating risks by addressing overly permissive configurations. KubeGuard is designed to harden K8s environments through two complementary tasks: Resource Creation and Resource Refinement. It leverages large language models (LLMs) to analyze manifests and runtime logs reflecting actual system behavior, using modular prompt-chaining workflows. This approach enables KubeGuard to create least-privilege configurations for new resources and refine existing manifests to reduce the attack surface. KubeGuard's output manifests are presented as recommendations that users (e.g., developers and operators) can review and adopt to enhance cluster security. Our evaluation demonstrates that KubeGuard effectively generates and refines K8s manifests for Roles, NetworkPolicies, and Deployments, leveraging both proprietary and open-source LLMs. The high precision, recall, and F1-scores affirm KubeGuard's practicality as a framework that translates runtime observability into actionable, least-privilege configuration guidance.
Via

Sep 03, 2025
Abstract:Recommender and search systems commonly rely on Learning To Rank models trained on logged user interactions to order items by predicted relevance. However, such interaction data is often subject to position bias, as users are more likely to click on items that appear higher in the ranking, regardless of their actual relevance. As a result, newly trained models may inherit and reinforce the biases of prior ranking models rather than genuinely improving relevance. A standard approach to mitigate position bias is Inverse Propensity Scoring (IPS), where the model's loss is weighted by the inverse of a propensity function, an estimate of the probability that an item at a given position is examined. However, accurate propensity estimation is challenging, especially in interfaces with complex non-linear layouts. In this paper, we propose a novel method for estimating position bias using Large Language Models (LLMs) applied to logged user interaction data. This approach offers a cost-effective alternative to online experimentation. Our experiments show that propensities estimated with our LLM-as-a-judge approach are stable across score buckets and reveal the row-column effects of Viator's grid layout that simpler heuristics overlook. An IPS-weighted reranker trained with these propensities matches the production model on standard NDCG@10 while improving weighted NDCG@10 by roughly 2%. We will verify these offline gains in forthcoming live-traffic experiments.
* Accepted at the CONSEQUENCES Workshop @ RecSys'25
Via

Sep 03, 2025
Abstract:Integrating product catalogs and user behavior into LLMs can enhance recommendations with broad world knowledge, but the scale of real-world item catalogs, often containing millions of discrete item identifiers (Item IDs), poses a significant challenge. This contrasts with the smaller, tokenized text vocabularies typically used in LLMs. The predominant view within the LLM-based recommendation literature is that it is infeasible to treat item ids as a first class citizen in the LLM and instead some sort of tokenization of an item into multiple tokens is required. However, this creates a key practical bottleneck in serving these models for real-time low-latency applications. Our paper challenges this predominant practice and integrates item ids as first class citizens into the LLM. We provide simple, yet highly effective, novel training and inference modifications that enable single-token representations of items and single-step decoding. Our method shows improvements in recommendation quality (Recall and NDCG) over existing techniques on the Amazon shopping datasets while significantly improving inference efficiency by 5x-14x. Our work offers an efficiency perspective distinct from that of other popular approaches within LLM-based recommendation, potentially inspiring further research and opening up a new direction for integrating IDs into LLMs. Our code is available here https://drive.google.com/file/d/1cUMj37rV0Z1bCWMdhQ6i4q4eTRQLURtC
Via

Sep 03, 2025
Abstract:Recommender systems often must maximize a primary objective while ensuring secondary ones satisfy minimum thresholds, or "guardrails." This is critical for maintaining a consistent user experience and platform ecosystem, but enforcing these guardrails despite orthogonal system changes is challenging and often requires manual hyperparameter tuning. We introduce the Automated Constraint Targeting (ACT) framework, which automatically finds the minimal set of hyperparameter changes needed to satisfy these guardrails. ACT uses an offline pairwise evaluation on unbiased data to find solutions and continuously retrains to adapt to system and user behavior changes. We empirically demonstrate its efficacy and describe its deployment in a large-scale production environment.
Via

Aug 29, 2025
Abstract:Introduction: Large language models (LLM) have shown great potential in clinical decision support. GPT-5 is a novel LLM system that has been specifically marketed towards oncology use. Methods: Performance was assessed using two complementary benchmarks: (i) the ACR Radiation Oncology In-Training Examination (TXIT, 2021), comprising 300 multiple-choice items, and (ii) a curated set of 60 authentic radiation oncologic vignettes representing diverse disease sites and treatment indications. For the vignette evaluation, GPT-5 was instructed to generate concise therapeutic plans. Four board-certified radiation oncologists rated correctness, comprehensiveness, and hallucinations. Inter-rater reliability was quantified using Fleiss' \k{appa}. Results: On the TXIT benchmark, GPT-5 achieved a mean accuracy of 92.8%, outperforming GPT-4 (78.8%) and GPT-3.5 (62.1%). Domain-specific gains were most pronounced in Dose and Diagnosis. In the vignette evaluation, GPT-5's treatment recommendations were rated highly for correctness (mean 3.24/4, 95% CI: 3.11-3.38) and comprehensiveness (3.59/4, 95% CI: 3.49-3.69). Hallucinations were rare with no case reaching majority consensus for their presence. Inter-rater agreement was low (Fleiss' \k{appa} 0.083 for correctness), reflecting inherent variability in clinical judgment. Errors clustered in complex scenarios requiring precise trial knowledge or detailed clinical adaptation. Discussion: GPT-5 clearly outperformed prior model variants on the radiation oncology multiple-choice benchmark. Although GPT-5 exhibited favorable performance in generating real-world radiation oncology treatment recommendations, correctness ratings indicate room for further improvement. While hallucinations were infrequent, the presence of substantive errors underscores that GPT-5-generated recommendations require rigorous expert oversight before clinical implementation.
* Under review in Frontiers in Artificial Intelligence
Via

Aug 29, 2025
Abstract:Modeling user interest based on lifelong user behavior sequences is crucial for enhancing Click-Through Rate (CTR) prediction. However, long post-click behavior sequences themselves pose severe performance issues: the sheer volume of data leads to high computational costs and inefficiencies in model training and inference. Traditional methods address this by introducing two-stage approaches, but this compromises model effectiveness due to incomplete utilization of the full sequence context. More importantly, integrating multimodal embeddings into existing large recommendation models (LRM) presents significant challenges: These embeddings often exacerbate computational burdens and mismatch with LRM architectures. To address these issues and enhance the model's efficiency and accuracy, we introduce Deep Multimodal Group Interest Network (DMGIN). Given the observation that user post-click behavior sequences contain a large number of repeated items with varying behaviors and timestamps, DMGIN employs Multimodal LLMs(MLLM) for grouping to reorganize complete lifelong post-click behavior sequences more effectively, with almost no additional computational overhead, as opposed to directly introducing multimodal embeddings. To mitigate the potential information loss from grouping, we have implemented two key strategies. First, we analyze behaviors within each group using both interest statistics and intra-group transformers to capture group traits. Second, apply inter-group transformers to temporally ordered groups to capture the evolution of user group interests. Our extensive experiments on both industrial and public datasets confirm the effectiveness and efficiency of DMGIN. The A/B test in our LBS advertising system shows that DMGIN improves CTR by 4.7% and Revenue per Mile by 2.3%.
* 8 pages, 5 figures
Via

Aug 29, 2025
Abstract:Model stealing attacks endanger the confidentiality of machine learning models offered as a service. Although these models are kept secret, a malicious party can query a model to label data samples and train their own substitute model, violating intellectual property. While novel attacks in the field are continually being published, their design and evaluations are not standardised, making it challenging to compare prior works and assess progress in the field. This paper is the first to address this gap by providing recommendations for designing and evaluating model stealing attacks. To this end, we study the largest group of attacks that rely on training a substitute model -- those attacking image classification models. We propose the first comprehensive threat model and develop a framework for attack comparison. Further, we analyse attack setups from related works to understand which tasks and models have been studied the most. Based on our findings, we present best practices for attack development before, during, and beyond experiments and derive an extensive list of open research questions regarding the evaluation of model stealing attacks. Our findings and recommendations also transfer to other problem domains, hence establishing the first generic evaluation methodology for model stealing attacks.
* Under review
Via
