Conversational agents are increasingly used as support tools along mental therapeutic pathways with significant societal impacts. In particular, empathy is a key non-functional requirement in therapeutic contexts, yet current chatbot development practices provide no systematic means to specify or verify it. This paper envisions a framework integrating natural language processing and formal verification to deliver empathetic therapy chatbots. A Transformer-based model extracts dialogue features, which are then translated into a Stochastic Hybrid Automaton model of dyadic therapy sessions. Empathy-related properties can then be verified through Statistical Model Checking, while strategy synthesis provides guidance for shaping agent behavior. Preliminary results show that the formal model captures therapy dynamics with good fidelity and that ad-hoc strategies improve the probability of satisfying empathy requirements.
The rapid advancement of Large Language Models (LLMs) has necessitated more robust evaluation methods that go beyond static benchmarks, which are increasingly prone to data saturation and leakage. In this paper, we propose a dynamic benchmarking framework for evaluating multilingual and multicultural capabilities through the social deduction game Spyfall. In our setup, models must engage in strategic dialogue to either identify a secret agent or avoid detection, utilizing culturally relevant locations or local foods. Our results show that our game-based rankings align closely with the Chatbot Arena. However, we find a significant performance gap in non-English contexts: models are generally less proficient when handling locally specific entities and often struggle with rule-following or strategic integrity in non-English languages. We demonstrate that this game-based approach provides a scalable, leakage-resistant, and culturally nuanced alternative to traditional NLP benchmarks. The game history can be accessed here https://huggingface.co/datasets/haryoaw/cultural-spyfall.
As emotional support chatbots have recently gained significant traction across both research and industry, a common evaluation strategy has emerged: use help-seeker simulators to interact with supporter chatbots. However, current simulators suffer from two critical limitations: (1) they fail to capture the behavioral diversity of real-world seekers, often portraying them as overly cooperative, and (2) they lack the controllability required to simulate specific seeker profiles. To address these challenges, we present a controllable seeker simulator driven by nine psychological and linguistic features that underpin seeker behavior. Using authentic Reddit conversations, we train our model via a Mixture-of-Experts (MoE) architecture, which effectively differentiates diverse seeker behaviors into specialized parameter subspaces, thereby enhancing fine-grained controllability. Our simulator achieves superior profile adherence and behavioral diversity compared to existing approaches. Furthermore, evaluating 7 prominent supporter models with our system uncovers previously obscured performance degradations. These findings underscore the utility of our framework in providing a more faithful and stress-tested evaluation for emotional support chatbots.
Building NLP systems for subjective tasks requires one to ensure their alignment to contrasting human values. We propose the MultiCalibrated Subjective Task Learner framework (MC-STL), which clusters annotations into identifiable human value clusters by three approaches (similarity of annotator rationales, expert-value taxonomies or rater's sociocultural descriptors) and calibrates predictions for each value cluster by learning cluster-specific embeddings. We demonstrate MC-STL on several subjective learning settings, including ordinal, binary, and preference learning predictions, and evaluate it on multiple datasets covering toxic chatbot conversations, offensive social media posts, and human preference alignment. The results show that MC-STL consistently outperforms the baselines that ignore the latent value structure of the annotations, delivering gains in discrimination, value-specific calibration, and disagreement-aware metrics.
Real-time multimodal auto-completion is essential for digital assistants, chatbots, design tools, and healthcare consultations, where user inputs rely on shared visual context. We introduce Multimodal Auto-Completion (MAC), a task that predicts upcoming characters in live chats using partially typed text and visual cues. Unlike traditional text-only auto-completion (TAC), MAC grounds predictions in multimodal context to better capture user intent. To enable this task, we adapt MMDialog and ImageChat to create benchmark datasets. We evaluate leading vision-language models (VLMs) against strong textual baselines, highlighting trade-offs in accuracy and efficiency. We present Router-Suggest, a router framework that dynamically selects between textual models and VLMs based on dialog context, along with a lightweight variant for resource-constrained environments. Router-Suggest achieves a 2.3x to 10x speedup over the best-performing VLM. A user study shows that VLMs significantly excel over textual models on user satisfaction, notably saving user typing effort and improving the quality of completions in multi-turn conversations. These findings underscore the need for multimodal context in auto-completions, leading to smarter, user-aware assistants.
The availability of Large Language Models (LLMs) has led to a new generation of powerful chatbots that can be developed at relatively low cost. As companies deploy these tools, security challenges need to be addressed to prevent financial loss and reputational damage. A key security challenge is jailbreaking, the malicious manipulation of prompts and inputs to bypass a chatbot's safety guardrails. Multi-turn attacks are a relatively new form of jailbreaking involving a carefully crafted chain of interactions with a chatbot. We introduce Echo Chamber, a new multi-turn attack using a gradual escalation method. We describe this attack in detail, compare it to other multi-turn attacks, and demonstrate its performance against multiple state-of-the-art models through extensive evaluation.
Engineering education faces a double disruption: traditional apprenticeship models that cultivated judgment and tacit skill are eroding, just as generative AI emerges as an informal coaching partner. This convergence rekindles long-standing questions in the philosophy of AI and cognition about the limits of computation, the nature of embodied rationality, and the distinction between information processing and wisdom. Building on this rich intellectual tradition, this paper examines whether AI chatbots can provide coaching that fosters mastery rather than merely delivering information. We synthesize critical perspectives from decades of scholarship on expertise, tacit knowledge, and human-machine interaction, situating them within the context of contemporary AI-driven education. Empirically, we report findings from a mixed-methods study (N = 75 students, N = 7 faculty) exploring the use of a coaching chatbot in engineering education. Results reveal a consistent boundary: participants accept AI for technical problem solving (convergent tasks; M = 3.84 on a 1-5 Likert scale) but remain skeptical of its capacity for moral, emotional, and contextual judgment (divergent tasks). Faculty express stronger concerns over risk (M = 4.71 vs. M = 4.14, p = 0.003), and privacy emerges as a key requirement, with 64-71 percent of participants demanding strict confidentiality. Our findings suggest that while generative AI can democratize access to cognitive and procedural support, it cannot replicate the embodied, value-laden dimensions of human mentorship. We propose a multiplex coaching framework that integrates human wisdom within expert-in-the-loop models, preserving the depth of apprenticeship while leveraging AI scalability to enrich the next generation of engineering education.
Large Language Models (LLMs) such as ChatGPT, Claude, and Gemini increasingly act as general-purpose copilots, yet they often respond with unnecessary length on simple requests, adding redundant explanations, hedging, or boilerplate that increases cognitive load and inflates token-based inference cost. Prior work suggests that preference-based post-training and LLM-judged evaluations can induce systematic length bias, where longer answers are rewarded even at comparable quality. We introduce YapBench, a lightweight benchmark for quantifying user-visible over-generation on brevity-ideal prompts. Each item consists of a single-turn prompt, a curated minimal-sufficient baseline answer, and a category label. Our primary metric, YapScore, measures excess response length beyond the baseline in characters, enabling comparisons across models without relying on any specific tokenizer. We summarize model performance via the YapIndex, a uniformly weighted average of category-level median YapScores. YapBench contains over three hundred English prompts spanning three common brevity-ideal settings: (A) minimal or ambiguous inputs where the ideal behavior is a short clarification, (B) closed-form factual questions with short stable answers, and (C) one-line coding tasks where a single command or snippet suffices. Evaluating 76 assistant LLMs, we observe an order-of-magnitude spread in median excess length and distinct category-specific failure modes, including vacuum-filling on ambiguous inputs and explanation or formatting overhead on one-line technical requests. We release the benchmark and maintain a live leaderboard for tracking verbosity behavior over time.
Bias in Large Language Models (LLMs) poses significant risks to trustworthiness, manifesting primarily as stereotypical biases (e.g., gender or racial stereotypes) and structural biases (e.g., lexical overlap or position preferences). However, prior paradigms typically address these in isolation, often mitigating one at the expense of exacerbating the other. To address this, we conduct a systematic exploration of these reasoning failures and identify a primary inducement: the latent spurious feature correlations within the input that drive these erroneous reasoning shortcuts. Driven by these findings, we introduce Causal-Contrastive Preference Optimization (C2PO), a unified alignment framework designed to tackle these specific failures by simultaneously discovering and suppressing these correlations directly within the optimization process. Specifically, C2PO leverages causal counterfactual signals to isolate bias-inducing features from valid reasoning paths, and employs a fairness-sensitive preference update mechanism to dynamically evaluate logit-level contributions and suppress shortcut features. Extensive experiments across multiple benchmarks covering stereotypical bias (BBQ, Unqover), structural bias (MNLI, HANS, Chatbot, MT-Bench), out-of-domain fairness (StereoSet, WinoBias), and general utility (MMLU, GSM8K) demonstrate that C2PO effectively mitigates stereotypical and structural biases while preserving robust general reasoning capabilities.
Claims about whether large language model (LLM) chatbots "reason" are typically debated using curated benchmarks and laboratory-style evaluation protocols. This paper offers a complementary perspective: a student-led field experiment embedded as a midterm project in UNIV 182 (AI4All) at George Mason University, a Mason Core course designed for undergraduates across disciplines with no expected prior STEM exposure. Student teams designed their own reasoning tasks, ran them on widely used consumer chatbots representative of current capabilities, and evaluated both (i) answer correctness and (ii) the validity of the chatbot's stated reasoning (for example, cases where an answer is correct but the explanation is not, or vice versa). Across eight teams that reported standardized scores, students contributed 80 original reasoning prompts spanning six categories: pattern completion, transformation rules, spatial/visual reasoning, quantitative reasoning, relational/logic reasoning, and analogical reasoning. These prompts yielded 320 model responses plus follow-up explanations. Aggregating team-level results, OpenAI GPT-5 and Claude 4.5 achieved the highest mean answer accuracy (86.2% and 83.8%), followed by Grok 4 (82.5%) and Perplexity (73.1%); explanation validity showed a similar ordering (81.2%, 80.0%, 77.5%, 66.2%). Qualitatively, teams converged on a consistent error signature: strong performance on short, structured math and pattern items but reduced reliability on spatial/visual reasoning and multi-step transformations, with frequent "sound right but reason wrong" explanations. The assignment's primary contribution is pedagogical: it operationalizes AI literacy as experimental practice (prompt design, measurement, rater disagreement, and interpretability/grounding) while producing a reusable, student-generated corpus of reasoning probes grounded in authentic end-user interaction.