Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Multimodal aspect-based sentiment analysis (MABSA) aims to identify aspect-level sentiments by jointly modeling textual and visual information, which is essential for fine-grained opinion understanding in social media. Existing approaches mainly rely on discriminative classification with complex multimodal fusion, yet lacking explicit sentiment explainability. In this paper, we reformulate MABSA as a generative and explainable task, proposing a unified framework that simultaneously predicts aspect-level sentiment and generates natural language explanations. Based on multimodal large language models (MLLMs), our approach employs a prompt-based generative paradigm, jointly producing sentiment and explanation. To further enhance aspect-oriented reasoning capabilities, we propose a dependency-syntax-guided sentiment cue strategy. This strategy prunes and textualizes the aspect-centered dependency syntax tree, guiding the model to distinguish different sentiment aspects and enhancing its explainability. To enable explainability, we use MLLMs to construct new datasets with sentiment explanations to fine-tune. Experiments show that our approach not only achieves consistent gains in sentiment classification accuracy, but also produces faithful, aspect-grounded explanations.
Identifying the strengths and limitations of a research paper is a core component of any literature review. However, traditional summaries reflect only the authors' self-presented perspective. Analyzing how other researchers discuss and cite the paper can offer a deeper, more practical understanding of its contributions and shortcomings. In this research, we introduce SECite, a novel approach for evaluating scholarly impact through sentiment analysis of citation contexts. We develop a semi-automated pipeline to extract citations referencing nine research papers and apply advanced natural language processing (NLP) techniques with unsupervised machine learning to classify these citation statements as positive or negative. Beyond sentiment classification, we use generative AI to produce sentiment-specific summaries that capture the strengths and limitations of each target paper, derived both from clustered citation groups and from the full text. Our findings reveal meaningful patterns in how the academic community perceives these works, highlighting areas of alignment and divergence between external citation feedback and the authors' own presentation. By integrating citation sentiment analysis with LLM-based summarization, this study provides a comprehensive framework for assessing scholarly contributions.
The emergence of large language models (LLMs) has significantly transformed natural language processing (NLP), enabling more generalized models to perform various tasks with minimal training. However, traditional sentiment analysis methods, which focus on individual tasks such as sentiment classification or aspect-based analysis, are not practical for real-world applications that usually require handling multiple tasks. While offering flexibility, LLMs in sentiment-specific tasks often fall short of the required accuracy. Techniques like fine-tuning and evolutionary model merging help integrate models into a unified framework, which can improve the learning performance while reducing computational costs. The use of task meta-data and curriculum learning to optimize learning processes remains underexplored, while sentiment analysis is a critical task in NLP that requires high accuracy and scalability across multiple subtasks. In this study, we propose a hybrid learning model called Multi-stage Evolutionary Model Merging with Meta data driven Curriculum Learning (MEM-MCL), to enhance the sentiment analysis in large language modeling. In particular, expert models are created through instruction tuning for specific sentiment tasks and then merged using evolutionary algorithms to form a unified model. The merging process is optimized with weak data to enhance performance across tasks. The curriculum learning is incorporated to provide a learning sequence based on task difficulty, improving knowledge extraction from LLMs. Experiment results demonstrate that the proposed MEM-MCL model outperforms conventional LLMs in a majority of sentiment analysis tasks, achieving superior results across various subtasks.
Use cases of sentiment analysis in the humanities often require contextualized, continuous scores. Concept Vector Projections (CVP) offer a recent solution: by modeling sentiment as a direction in embedding space, they produce continuous, multilingual scores that align closely with human judgments. Yet the method's portability across domains and underlying assumptions remain underexplored. We evaluate CVP across genres, historical periods, languages, and affective dimensions, finding that concept vectors trained on one corpus transfer well to others with minimal performance loss. To understand the patterns of generalization, we further examine the linearity assumption underlying CVP. Our findings suggest that while CVP is a portable approach that effectively captures generalizable patterns, its linearity assumption is approximate, pointing to potential for further development.
Despite remarkable progress in large language models, Urdu-a language spoken by over 230 million people-remains critically underrepresented in modern NLP systems. Existing multilingual models demonstrate poor performance on Urdu-specific tasks, struggling with the language's complex morphology, right-to-left Nastaliq script, and rich literary traditions. Even the base LLaMA-3.1 8B-Instruct model shows limited capability in generating fluent, contextually appropriate Urdu text. We introduce Qalb, an Urdu language model developed through a two-stage approach: continued pre-training followed by supervised fine-tuning. Starting from LLaMA 3.1 8B, we perform continued pre-training on a dataset of 1.97 billion tokens. This corpus comprises 1.84 billion tokens of diverse Urdu text-spanning news archives, classical and contemporary literature, government documents, and social media-combined with 140 million tokens of English Wikipedia data to prevent catastrophic forgetting. We then fine-tune the resulting model on the Alif Urdu-instruct dataset. Through extensive evaluation on Urdu-specific benchmarks, Qalb demonstrates substantial improvements, achieving a weighted average score of 90.34 and outperforming the previous state-of-the-art Alif-1.0-Instruct model (87.1) by 3.24 points, while also surpassing the base LLaMA-3.1 8B-Instruct model by 44.64 points. Qalb achieves state-of-the-art performance with comprehensive evaluation across seven diverse tasks including Classification, Sentiment Analysis, and Reasoning. Our results demonstrate that continued pre-training on diverse, high-quality language data, combined with targeted instruction fine-tuning, effectively adapts foundation models to low-resource languages.
The effectiveness of brand monitoring in India is increasingly challenged by the rise of Hinglish--a hybrid of Hindi and English--used widely in user-generated content on platforms like Twitter. Traditional Natural Language Processing (NLP) models, built for monolingual data, often fail to interpret the syntactic and semantic complexity of this code-mixed language, resulting in inaccurate sentiment analysis and misleading market insights. To address this gap, we propose a high-performance sentiment classification framework specifically designed for Hinglish tweets. Our approach fine-tunes mBERT (Multilingual BERT), leveraging its multilingual capabilities to better understand the linguistic diversity of Indian social media. A key component of our methodology is the use of subword tokenization, which enables the model to effectively manage spelling variations, slang, and out-of-vocabulary terms common in Romanized Hinglish. This research delivers a production-ready AI solution for brand sentiment tracking and establishes a strong benchmark for multilingual NLP in low-resource, code-mixed environments.
Aspect Term Extraction (ATE) identifies aspect terms in review sentences, a key subtask of sentiment analysis. While most existing approaches use energy-intensive deep neural networks (DNNs) for ATE as sequence labeling, this paper proposes a more energy-efficient alternative using Spiking Neural Networks (SNNs). Using sparse activations and event-driven inferences, SNNs capture temporal dependencies between words, making them suitable for ATE. The proposed architecture, SpikeATE, employs ternary spiking neurons and direct spike training fine-tuned with pseudo-gradients. Evaluated on four benchmark SemEval datasets, SpikeATE achieves performance comparable to state-of-the-art DNNs with significantly lower energy consumption. This highlights the use of SNNs as a practical and sustainable choice for ATE tasks.
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
We introduce Arctic-ABSA, a collection of powerful models for real-life aspect-based sentiment analysis (ABSA). Our models are tailored to commercial needs, trained on a large corpus of public data alongside carefully generated synthetic data, resulting in a dataset 20 times larger than SemEval14. We extend typical ABSA models by expanding the number of sentiment classes from the standard three (positive, negative, neutral) to five, adding mixed and unknown classes, while also jointly predicting overall text sentiment and supporting multiple languages. We experiment with reasoning injection by fine-tuning on Chain-of-Thought (CoT) examples and introduce a novel reasoning pretraining technique for encoder-only models that significantly improves downstream fine-tuning and generalization. Our 395M-parameter encoder and 8B-parameter decoder achieve up to 10 percentage points higher accuracy than GPT-4o and Claude 3.5 Sonnet, while setting new state-of-the-art results on the SemEval14 benchmark. A single multilingual model maintains 87-91% accuracy across six languages without degrading English performance. We release ABSA-mix, a large-scale benchmark aggregating 17 public ABSA datasets across 92 domains.
Anxiety affects hundreds of millions of individuals globally, yet large-scale screening remains limited. Social media language provides an opportunity for scalable detection, but current models often lack interpretability, keyword-robustness validation, and rigorous user-level data integrity. This work presents a transparent approach to social media-based anxiety detection through linguistically interpretable feature-grounded modeling and cross-domain validation. Using a substantial dataset of Reddit posts, we trained a logistic regression classifier on carefully curated subreddits for training, validation, and test splits. Comprehensive evaluation included feature ablation, keyword masking experiments, and varying-density difference analyses comparing anxious and control groups, along with external validation using clinically interviewed participants with diagnosed anxiety disorders. The model achieved strong performance while maintaining high accuracy even after sentiment removal or keyword masking. Early detection using minimal post history significantly outperformed random classification, and cross-domain analysis demonstrated strong consistency with clinical interview data. Results indicate that transparent linguistic features can support reliable, generalizable, and keyword-robust anxiety detection. The proposed framework provides a reproducible baseline for interpretable mental health screening across diverse online contexts.