Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Log anomaly detection is crucial for preserving the security of operating systems. Depending on the source of log data collection, various information is recorded in logs that can be considered log modalities. In light of this intuition, unimodal methods often struggle by ignoring the different modalities of log data. Meanwhile, multimodal methods fail to handle the interactions between these modalities. Applying multimodal sentiment analysis to log anomaly detection, we propose CoLog, a framework that collaboratively encodes logs utilizing various modalities. CoLog utilizes collaborative transformers and multi-head impressed attention to learn interactions among several modalities, ensuring comprehensive anomaly detection. To handle the heterogeneity caused by these interactions, CoLog incorporates a modality adaptation layer, which adapts the representations from different log modalities. This methodology enables CoLog to learn nuanced patterns and dependencies within the data, enhancing its anomaly detection capabilities. Extensive experiments demonstrate CoLog's superiority over existing state-of-the-art methods. Furthermore, in detecting both point and collective anomalies, CoLog achieves a mean precision of 99.63%, a mean recall of 99.59%, and a mean F1 score of 99.61% across seven benchmark datasets for log-based anomaly detection. The comprehensive detection capabilities of CoLog make it highly suitable for cybersecurity, system monitoring, and operational efficiency. CoLog represents a significant advancement in log anomaly detection, providing a sophisticated and effective solution to point and collective anomaly detection through a unified framework and a solution to the complex challenges automatic log data analysis poses. We also provide the implementation of CoLog at https://github.com/NasirzadehMoh/CoLog.
Evaluating the performance of various model architectures, such as transformers, large language models (LLMs), and other NLP systems, requires comprehensive benchmarks that measure performance across multiple dimensions. Among these, the evaluation of natural language understanding (NLU) is particularly critical as it serves as a fundamental criterion for assessing model capabilities. Thus, it is essential to establish benchmarks that enable thorough evaluation and analysis of NLU abilities from diverse perspectives. While the GLUE benchmark has set a standard for evaluating English NLU, similar benchmarks have been developed for other languages, such as CLUE for Chinese, FLUE for French, and JGLUE for Japanese. However, no comparable benchmark currently exists for the Turkish language. To address this gap, we introduce TrGLUE, a comprehensive benchmark encompassing a variety of NLU tasks for Turkish. In addition, we present SentiTurca, a specialized benchmark for sentiment analysis. To support researchers, we also provide fine-tuning and evaluation code for transformer-based models, facilitating the effective use of these benchmarks. TrGLUE comprises Turkish-native corpora curated to mirror the domains and task formulations of GLUE-style evaluations, with labels obtained through a semi-automated pipeline that combines strong LLM-based annotation, cross-model agreement checks, and subsequent human validation. This design prioritizes linguistic naturalness, minimizes direct translation artifacts, and yields a scalable, reproducible workflow. With TrGLUE, our goal is to establish a robust evaluation framework for Turkish NLU, empower researchers with valuable resources, and provide insights into generating high-quality semi-automated datasets.
China's marriage registrations have declined dramatically, dropping from 13.47 million couples in 2013 to 6.1 million in 2024. Understanding public attitudes toward marriage requires examining not only emotional sentiment but also the moral reasoning underlying these evaluations. This study analyzed 219,358 marriage-related posts from two major Chinese social media platforms (Sina Weibo and Xiaohongshu) using large language model (LLM)-assisted content analysis. Drawing on Shweder's Big Three moral ethics framework, posts were coded for sentiment (positive, negative, neutral) and moral dimensions (Autonomy, Community, Divinity). Results revealed platform differences: Weibo discourse skewed positive, while Xiaohongshu was predominantly neutral. Most posts across both platforms lacked explicit moral framing. However, when moral ethics were invoked, significant associations with sentiment emerged. Posts invoking Autonomy ethics and Community ethics were predominantly negative, whereas Divinity-framed posts tended toward neutral or positive sentiment. These findings suggest that concerns about both personal autonomy constraints and communal obligations drive negative marriage attitudes in contemporary China. The study demonstrates LLMs' utility for scaling qualitative analysis and offers insights for developing culturally informed policies addressing marriage decline in Chinese contexts.
Financial sentiment analysis plays a crucial role in informing investment decisions, assessing market risk, and predicting stock price trends. Existing works in financial sentiment analysis have not considered the impact of stock prices or market feedback on sentiment analysis. In this paper, we propose an adaptive framework that integrates large language models (LLMs) with real-world stock market feedback to improve sentiment classification in the context of the Indian stock market. The proposed methodology fine-tunes the LLaMA 3.2 3B model using instruction-based learning on the SentiFin dataset. To enhance sentiment predictions, a retrieval-augmented generation (RAG) pipeline is employed that dynamically selects multi-source contextual information based on the cosine similarity of the sentence embeddings. Furthermore, a feedback-driven module is introduced that adjusts the reliability of the source by comparing predicted sentiment with actual next-day stock returns, allowing the system to iteratively adapt to market behavior. To generalize this adaptive mechanism across temporal data, a reinforcement learning agent trained using proximal policy optimization (PPO) is incorporated. The PPO agent learns to optimize source weighting policies based on cumulative reward signals from sentiment-return alignment. Experimental results on NIFTY 50 news headlines collected from 2024 to 2025 demonstrate that the proposed system significantly improves classification accuracy, F1-score, and market alignment over baseline models and static retrieval methods. The results validate the potential of combining instruction-tuned LLMs with dynamic feedback and reinforcement learning for robust, market-aware financial sentiment modeling.
Third-party annotation is the status quo for labeling text, but egocentric information such as sentiment and belief can at best only be approximated by a third-person proxy. We introduce author labeling, an annotation technique where the writer of the document itself annotates the data at the moment of creation. We collaborate with a commercial chatbot with over 20,000 users to deploy an author labeling annotation system. This system identifies task-relevant queries, generates on-the-fly labeling questions, and records authors' answers in real time. We train and deploy an online-learning model architecture for product recommendation with author-labeled data to improve performance. We train our model to minimize the prediction error on questions generated for a set of predetermined subjective beliefs using author-labeled responses. Our model achieves a 537% improvement in click-through rate compared to an industry advertising baseline running concurrently. We then compare the quality and practicality of author labeling to three traditional annotation approaches for sentiment analysis and find author labeling to be higher quality, faster to acquire, and cheaper. These findings reinforce existing literature that annotations, especially for egocentric and subjective beliefs, are significantly higher quality when labeled by the author rather than a third party. To facilitate broader scientific adoption, we release an author labeling service for the research community at https://academic.echollm.io.




Teachers' emotional states are critical in educational scenarios, profoundly impacting teaching efficacy, student engagement, and learning achievements. However, existing studies often fail to accurately capture teachers' emotions due to the performative nature and overlook the critical impact of instructional information on emotional expression.In this paper, we systematically investigate teacher sentiment analysis by building both the dataset and the model accordingly. We construct the first large-scale teacher multimodal sentiment analysis dataset, T-MED.To ensure labeling accuracy and efficiency, we employ a human-machine collaborative labeling process.The T-MED dataset includes 14,938 instances of teacher emotional data from 250 real classrooms across 11 subjects ranging from K-12 to higher education, integrating multimodal text, audio, video, and instructional information.Furthermore, we propose a novel asymmetric attention-based multimodal teacher sentiment analysis model, AAM-TSA.AAM-TSA introduces an asymmetric attention mechanism and hierarchical gating unit to enable differentiated cross-modal feature fusion and precise emotional classification. Experimental results demonstrate that AAM-TSA significantly outperforms existing state-of-the-art methods in terms of accuracy and interpretability on the T-MED dataset.
In the rapidly evolving landscape of enterprise natural language processing (NLP), the demand for efficient, lightweight models capable of handling multi-domain text automation tasks has intensified. This study conducts a comparative analysis of three prominent lightweight Transformer models - DistilBERT, MiniLM, and ALBERT - across three distinct domains: customer sentiment classification, news topic classification, and toxicity and hate speech detection. Utilizing datasets from IMDB, AG News, and the Measuring Hate Speech corpus, we evaluated performance using accuracy-based metrics including accuracy, precision, recall, and F1-score, as well as efficiency metrics such as model size, inference time, throughput, and memory usage. Key findings reveal that no single model dominates all performance dimensions. ALBERT achieves the highest task-specific accuracy in multiple domains, MiniLM excels in inference speed and throughput, and DistilBERT demonstrates the most consistent accuracy across tasks while maintaining competitive efficiency. All results reflect controlled fine-tuning under fixed enterprise-oriented constraints rather than exhaustive hyperparameter optimization. These results highlight trade-offs between accuracy and efficiency, recommending MiniLM for latency-sensitive enterprise applications, DistilBERT for balanced performance, and ALBERT for resource-constrained environments.
Sentiment analysis using Electroencephalography (EEG) sensor signals provides a deeper behavioral understanding of a person's emotional state, offering insights into real-time mood fluctuations. This approach takes advantage of brain electrical activity, making it a promising tool for various applications, including mental health monitoring, affective computing, and personalised user experiences. An encoder-based model for EEG-to-sentiment analysis, utilizing the ZUCO 2.0 dataset and incorporating a Feature Pyramid Network (FPN), is proposed to enhance this process. FPNs are adapted here for EEG sensor data, enabling multiscale feature extraction to capture local and global sentiment-related patterns. The raw EEG sensor data from the ZUCO 2.0 dataset is pre-processed and passed through the FPN, which extracts hierarchical features. In addition, extracted features are passed to a Gated Recurrent Unit (GRU) to model temporal dependencies, thereby enhancing the accuracy of sentiment classification. The ZUCO 2.0 dataset is utilized for its clear and detailed representation in 128 channels, offering rich spatial and temporal resolution. The experimental metric results show that the proposed architecture achieves a 6.88\% performance gain compared to the existing methods. Furthermore, the proposed framework demonstrated its efficacy on the validation datasets DEAP and SEED.
We present Algerian Dialect, a large-scale sentiment-annotated dataset consisting of 45,000 YouTube comments written in Algerian Arabic dialect. The comments were collected from more than 30 Algerian press and media channels using the YouTube Data API. Each comment is manually annotated into one of five sentiment categories: very negative, negative, neutral, positive, and very positive. In addition to sentiment labels, the dataset includes rich metadata such as collection timestamps, like counts, video URLs, and annotation dates. This dataset addresses the scarcity of publicly available resources for Algerian dialect and aims to support research in sentiment analysis, dialectal Arabic NLP, and social media analytics. The dataset is publicly available on Mendeley Data under a CC BY 4.0 license at https://doi.org/10.17632/zzwg3nnhsz.2.
Text classification plays an important role in various downstream text-related tasks, such as sentiment analysis, fake news detection, and public opinion analysis. Recently, text classification based on Graph Neural Networks (GNNs) has made significant progress due to their strong capabilities of structural relationship learning. However, these approaches still face two major limitations. First, these approaches fail to fully consider the diverse structural information across word pairs, e.g., co-occurrence, syntax, and semantics. Furthermore, they neglect sequence information in the text graph structure information learning module and can not classify texts with new words and relations. In this paper, we propose a Novel Graph-Sequence Learning Model for Inductive Text Classification (TextGSL) to address the previously mentioned issues. More specifically, we construct a single text-level graph for all words in each text and establish different edge types based on the diverse relationships between word pairs. Building upon this, we design an adaptive multi-edge message-passing paradigm to aggregate diverse structural information between word pairs. Additionally, sequential information among text data can be captured by the proposed TextGSL through the incorporation of Transformer layers. Therefore, TextGSL can learn more discriminative text representations. TextGSL has been comprehensively compared with several strong baselines. The experimental results on diverse benchmarking datasets demonstrate that TextGSL outperforms these baselines in terms of accuracy.