Information extraction is the process of automatically extracting structured information from unstructured text data.
In the realm of medical diagnostics, rapid advancements in Artificial Intelligence (AI) have significantly yielded remarkable improvements in brain tumor segmentation. Encoder-Decoder architectures, such as U-Net, have played a transformative role by effectively extracting meaningful representations in 3D brain tumor segmentation from Magnetic resonance imaging (MRI) scans. However, standard U-Net models encounter challenges in accurately delineating tumor regions, especially when dealing with irregular shapes and ambiguous boundaries. Additionally, training robust segmentation models on high-resolution MRI data, such as the BraTS datasets, necessitates high computational resources and often faces challenges associated with class imbalance. This study proposes the integration of the attention mechanism into the 3D U-Net model, enabling the model to capture intricate details and prioritize informative regions during the segmentation process. Additionally, a tumor detection algorithm based on digital image processing techniques is utilized to address the issue of imbalanced training data and mitigate bias. This study aims to enhance the performance of brain tumor segmentation, ultimately improving the reliability of diagnosis. The proposed model is thoroughly evaluated and assessed on the BraTS 2020 dataset using various performance metrics to accomplish this goal. The obtained results indicate that the model outperformed related studies, exhibiting dice of 0.975, specificity of 0.988, and sensitivity of 0.995, indicating the efficacy of the proposed model in improving brain tumor segmentation, offering valuable insights for reliable diagnosis in clinical settings.
Manipulating three-dimensional (3D) deformable objects presents significant challenges for robotic systems due to their infinite-dimensional state space and complex deformable dynamics. This paper proposes a novel model-free approach for shape control with constraints imposed on key points. Unlike existing methods that rely on feature dimensionality reduction, the proposed controller leverages the coordinates of key points as the feature vector, which are extracted from the deformable object's point cloud using deep learning methods. This approach not only reduces the dimensionality of the feature space but also retains the spatial information of the object. By extracting key points, the manipulation of deformable objects is simplified into a visual servoing problem, where the shape dynamics are described using a deformation Jacobian matrix. To enhance control accuracy, a prescribed performance control method is developed by integrating barrier Lyapunov functions (BLF) to enforce constraints on the key points. The stability of the closed-loop system is rigorously analyzed and verified using the Lyapunov method. Experimental results further demonstrate the effectiveness and robustness of the proposed method.
This work, termed MH-LVC, presents a multi-hypothesis temporal prediction scheme that employs long- and short-term reference frames in a conditional residual video coding framework. Recent temporal context mining approaches to conditional video coding offer superior coding performance. However, the need to store and access a large amount of implicit contextual information extracted from past decoded frames in decoding a video frame poses a challenge due to excessive memory access. Our MH-LVC overcomes this issue by storing multiple long- and short-term reference frames but limiting the number of reference frames used at a time for temporal prediction to two. Our decoded frame buffer management allows the encoder to flexibly utilize the long-term key frames to mitigate temporal cascading errors and the short-term reference frames to minimize prediction errors. Moreover, our buffering scheme enables the temporal prediction structure to be adapted to individual input videos. While this flexibility is common in traditional video codecs, it has not been fully explored for learned video codecs. Extensive experiments show that the proposed method outperforms VTM-17.0 under the low-delay B configuration in terms of PSNR-RGB across commonly used test datasets, and performs comparably to the state-of-the-art learned codecs (e.g.~DCVC-FM) while requiring less decoded frame buffer and similar decoding time.
The study of X-ray spectra is crucial to understanding the physical nature of astrophysical sources. Machine learning methods can extract compact and informative representations of data from large datasets. The Chandra Source Catalog (CSC) provides a rich archive of X-ray spectral data, which remains largely underexplored in this context. This work aims to develop a compact and physically meaningful representation of Chandra X-ray spectra using deep learning. To verify that the learned representation captures relevant information, we evaluate it through classification, regression, and interpretability analyses. We use a transformer-based autoencoder to compress X-ray spectra. The input spectra, drawn from the CSC, include only high-significance detections. Astrophysical source types and physical summary statistics are compiled from external catalogs. We evaluate the learned representation in terms of spectral reconstruction accuracy, clustering performance on 8 known astrophysical source classes, and correlation with physical quantities such as hardness ratios and hydrogen column density ($N_H$). The autoencoder accurately reconstructs spectra with 8 latent variables. Clustering in the latent space yields a balanced classification accuracy of $\sim$40% across the 8 source classes, increasing to $\sim$69% when restricted to AGNs and stellar-mass compact objects exclusively. Moreover, latent features correlate with non-linear combinations of spectral fluxes, suggesting that the compressed representation encodes physically relevant information. The proposed autoencoder-based pipeline is a powerful tool for the representation and interpretation of X-ray spectra, providing a compact latent space that supports both classification and the estimation of physical properties. This work demonstrates the potential of deep learning for spectral studies and uncovering new patterns in X-ray data.
Medical images like MR scans often show domain shifts across imaging sites due to scanner and protocol differences, which degrade machine learning performance in tasks such as disease classification. Domain harmonization is thus a critical research focus. Recent approaches encode brain images $\boldsymbol{x}$ into a low-dimensional latent space $\boldsymbol{z}$, then disentangle it into $\boldsymbol{z_u}$ (domain-invariant) and $\boldsymbol{z_d}$ (domain-specific), achieving strong results. However, these methods often lack interpretability$-$an essential requirement in medical applications$-$leaving practical issues unresolved. We propose Pseudo-Linear-Style Encoder Adversarial Domain Adaptation (PL-SE-ADA), a general framework for domain harmonization and interpretable representation learning that preserves disease-relevant information in brain MR images. PL-SE-ADA includes two encoders $f_E$ and $f_{SE}$ to extract $\boldsymbol{z_u}$ and $\boldsymbol{z_d}$, a decoder to reconstruct the image $f_D$, and a domain predictor $g_D$. Beyond adversarial training between the encoder and domain predictor, the model learns to reconstruct the input image $\boldsymbol{x}$ by summing reconstructions from $\boldsymbol{z_u}$ and $\boldsymbol{z_d}$, ensuring both harmonization and informativeness. Compared to prior methods, PL-SE-ADA achieves equal or better performance in image reconstruction, disease classification, and domain recognition. It also enables visualization of both domain-independent brain features and domain-specific components, offering high interpretability across the entire framework.
Tactile perception is crucial for embodied intelligent robots to recognize objects. Vision-based tactile sensors extract object physical attributes multidimensionally using high spatial resolution; however, this process generates abundant redundant information. Furthermore, single-dimensional extraction, lacking effective fusion, fails to fully characterize object attributes. These challenges hinder the improvement of recognition accuracy. To address this issue, this study introduces a two-stream network feature extraction and fusion perception strategy for vision-based tactile systems. This strategy employs a distributed approach to extract internal and external object features. It obtains depth map information through three-dimensional reconstruction while simultaneously acquiring hardness information by measuring contact force data. After extracting features with a convolutional neural network (CNN), weighted fusion is applied to create a more informative and effective feature representation. In standard tests on objects of varying shapes and hardness, the force prediction error is 0.06 N (within a 12 N range). Hardness recognition accuracy reaches 98.0%, and shape recognition accuracy reaches 93.75%. With fusion algorithms, object recognition accuracy in actual grasping scenarios exceeds 98.5%. Focused on object physical attributes perception, this method enhances the artificial tactile system ability to transition from perception to cognition, enabling its use in embodied perception applications.
Multimodal large language models (MLLMs) integrate image features from visual encoders with LLMs, demonstrating advanced comprehension capabilities. However, mainstream MLLMs are solely supervised by the next-token prediction of textual tokens, neglecting critical vision-centric information essential for analytical abilities. To track this dilemma, we introduce VaCo, which optimizes MLLM representations through Vision-Centric activation and Coordination from multiple vision foundation models (VFMs). VaCo introduces visual discriminative alignment to integrate task-aware perceptual features extracted from VFMs, thereby unifying the optimization of both textual and visual outputs in MLLMs. Specifically, we incorporate the learnable Modular Task Queries (MTQs) and Visual Alignment Layers (VALs) into MLLMs, activating specific visual signals under the supervision of diverse VFMs. To coordinate representation conflicts across VFMs, the crafted Token Gateway Mask (TGM) restricts the information flow among multiple groups of MTQs. Extensive experiments demonstrate that VaCo significantly improves the performance of different MLLMs on various benchmarks, showcasing its superior capabilities in visual comprehension.
The convergence of IoT sensing, edge computing, and machine learning is transforming precision livestock farming. Yet bioacoustic data streams remain underused because of computational complexity and ecological validity challenges. We present one of the most comprehensive bovine vocalization datasets to date, with 569 curated clips covering 48 behavioral classes, recorded across three commercial dairy farms using multiple microphone arrays and expanded to 2900 samples through domain informed augmentation. This FAIR compliant resource addresses major Big Data challenges - volume (90 hours of recordings, 65.6 GB), variety (multi farm and multi zone acoustics), velocity (real time processing), and veracity (noise robust feature extraction). Our distributed processing framework integrates advanced denoising using iZotope RX, multimodal synchronization through audio and video alignment, and standardized feature engineering with 24 acoustic descriptors generated from Praat, librosa, and openSMILE. Preliminary benchmarks reveal distinct class level acoustic patterns for estrus detection, distress classification, and maternal communication. The datasets ecological realism, reflecting authentic barn acoustics rather than controlled settings, ensures readiness for field deployment. This work establishes a foundation for animal centered AI, where bioacoustic data enable continuous and non invasive welfare assessment at industrial scale. By releasing standardized pipelines and detailed metadata, we promote reproducible research that connects Big Data analytics, sustainable agriculture, and precision livestock management. The framework supports UN SDG 9, showing how data science can turn traditional farming into intelligent, welfare optimized systems that meet global food needs while upholding ethical animal care.




Free-text crash narratives recorded in real-world crash databases have been shown to play a significant role in improving traffic safety. However, large-scale analyses remain difficult to implement as there are no documented tools that can batch process the unstructured, non standardized text content written by various authors with diverse experience and attention to detail. In recent years, Transformer-based pre-trained language models (PLMs), such as Bidirectional Encoder Representations from Transformers (BERT) and large language models (LLMs), have demonstrated strong capabilities across various natural language processing tasks. These models can extract explicit facts from crash narratives, but their performance declines on inference-heavy tasks in, for example, Crash Type identification, which can involve nearly 100 categories. Moreover, relying on closed LLMs through external APIs raises privacy concerns for sensitive crash data. Additionally, these black-box tools often underperform due to limited domain knowledge. Motivated by these challenges, we study whether compact open-source PLMs can support reasoning-intensive extraction from crash narratives. We target two challenging objectives: 1) identifying the Manner of Collision for a crash, and 2) Crash Type for each vehicle involved in the crash event from real-world crash narratives. To bridge domain gaps, we apply fine-tuning techniques to inject task-specific knowledge to LLMs with Low-Rank Adaption (LoRA) and BERT. Experiments on the authoritative real-world dataset Crash Investigation Sampling System (CISS) demonstrate that our fine-tuned compact models outperform strong closed LLMs, such as GPT-4o, while requiring only minimal training resources. Further analysis reveals that the fine-tuned PLMs can capture richer narrative details and even correct some mislabeled annotations in the dataset.




Although recent advances in visual generation have been remarkable, most existing architectures still depend on distinct encoders for images and text. This separation constrains diffusion models' ability to perform cross-modal reasoning and knowledge transfer. Prior attempts to bridge this gap often use the last layer information from VLM, employ multiple visual encoders, or train large unified models jointly for text and image generation, which demands substantial computational resources and large-scale data, limiting its accessibility.We present UniFusion, a diffusion-based generative model conditioned on a frozen large vision-language model (VLM) that serves as a unified multimodal encoder. At the core of UniFusion is the Layerwise Attention Pooling (LAP) mechanism that extracts both high level semantics and low level details from text and visual tokens of a frozen VLM to condition a diffusion generative model. We demonstrate that LAP outperforms other shallow fusion architectures on text-image alignment for generation and faithful transfer of visual information from VLM to the diffusion model which is key for editing. We propose VLM-Enabled Rewriting Injection with Flexibile Inference (VERIFI), which conditions a diffusion transformer (DiT) only on the text tokens generated by the VLM during in-model prompt rewriting. VERIFI combines the alignment of the conditioning distribution with the VLM's reasoning capabilities for increased capabilities and flexibility at inference. In addition, finetuning on editing task not only improves text-image alignment for generation, indicative of cross-modality knowledge transfer, but also exhibits tremendous generalization capabilities. Our model when trained on single image editing, zero-shot generalizes to multiple image references further motivating the unified encoder design of UniFusion.