Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.




This project addresses the need for efficient, real-time analysis of biomedical signals such as electrocardiograms (ECG) and electroencephalograms (EEG) for continuous health monitoring. Traditional methods rely on long-duration data recording followed by offline analysis, which is power-intensive and delays responses to critical symptoms such as arrhythmia. To overcome these limitations, a time-domain ECG analysis model based on a novel dynamically-biased Long Short-Term Memory (DB-LSTM) neural network is proposed. This model supports simultaneous ECG forecasting and classification with high performance-achieving over 98% accuracy and a normalized mean square error below 1e-3 for forecasting, and over 97% accuracy with faster convergence and fewer training parameters for classification. To enable edge deployment, the model is hardware-optimized by quantizing weights to INT4 or INT3 formats, resulting in only a 2% and 6% drop in classification accuracy during training and inference, respectively, while maintaining full accuracy for forecasting. Extensive simulations using multiple ECG datasets confirm the model's robustness. Future work includes implementing the algorithm on FPGA and CMOS circuits for practical cardiac monitoring, as well as developing a digital hardware platform that supports flexible neural network configurations and on-chip online training for personalized healthcare applications.
Recent explainable artificial intelligence (XAI) methods for time series primarily estimate point-wise attribution magnitudes, while overlooking the directional impact on predictions, leading to suboptimal identification of significant points. Our analysis shows that conventional Integrated Gradients (IG) effectively capture critical points with both positive and negative impacts on predictions. However, current evaluation metrics fail to assess this capability, as they inadvertently cancel out opposing feature contributions. To address this limitation, we propose novel evaluation metrics-Cumulative Prediction Difference (CPD) and Cumulative Prediction Preservation (CPP)-to systematically assess whether attribution methods accurately identify significant positive and negative points in time series XAI. Under these metrics, conventional IG outperforms recent counterparts. However, directly applying IG to time series data may lead to suboptimal outcomes, as generated paths ignore temporal relationships and introduce out-of-distribution samples. To overcome these challenges, we introduce TIMING, which enhances IG by incorporating temporal awareness while maintaining its theoretical properties. Extensive experiments on synthetic and real-world time series benchmarks demonstrate that TIMING outperforms existing time series XAI baselines. Our code is available at https://github.com/drumpt/TIMING.
Background and Objectives: Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality. This study proposes an interpretable Machine Learning (ML) framework for MDR prediction, aiming for both accurate inference and enhanced explainability. Methods: Patients are modeled as Multivariate Time Series (MTS), capturing clinical progression and patient-to-patient interactions. Similarity among patients is quantified using MTS-based methods: descriptive statistics, Dynamic Time Warping, and Time Cluster Kernel. These similarity measures serve as inputs for MDR classification via Logistic Regression, Random Forest, and Support Vector Machines, with dimensionality reduction and kernel transformations improving model performance. For explainability, patient similarity networks are constructed from these metrics. Spectral clustering and t-SNE are applied to identify MDR-related subgroups and visualize high-risk clusters, enabling insight into clinically relevant patterns. Results: The framework was validated on ICU Electronic Health Records from the University Hospital of Fuenlabrada, achieving an AUC of 81%. It outperforms baseline ML and deep learning models by leveraging graph-based patient similarity. The approach identifies key risk factors -- prolonged antibiotic use, invasive procedures, co-infections, and extended ICU stays -- and reveals clinically meaningful clusters. Code and results are available at \https://github.com/oscarescuderoarnanz/DM4MTS. Conclusions: Patient similarity representations combined with graph-based analysis provide accurate MDR prediction and interpretable insights. This method supports early detection, risk factor identification, and patient stratification, highlighting the potential of explainable ML in critical care.
This paper addresses the challenge of accurately detecting the transition from the warmup phase to the steady state in performance metric time series, which is a critical step for effective benchmarking. The goal is to introduce a method that avoids premature or delayed detection, which can lead to inaccurate or inefficient performance analysis. The proposed approach adapts techniques from the chemical reactors domain, detecting steady states online through the combination of kernel-based step detection and statistical methods. By using a window-based approach, it provides detailed information and improves the accuracy of identifying phase transitions, even in noisy or irregular time series. Results show that the new approach reduces total error by 14.5% compared to the state-of-the-art method. It offers more reliable detection of the steady-state onset, delivering greater precision for benchmarking tasks. For users, the new approach enhances the accuracy and stability of performance benchmarking, efficiently handling diverse time series data. Its robustness and adaptability make it a valuable tool for real-world performance evaluation, ensuring consistent and reproducible results.
We provide an open-source dataset of RGB and NIR-HSI (near-infrared hyperspectral imaging) images with associated segmentation masks and NIR spectra of 2242 individual malting barley kernels. We imaged every kernel pre-exposure to moisture and every 24 hours after exposure to moisture for five consecutive days. Every barley kernel was labeled as germinated or not germinated during each image acquisition. The barley kernels were imaged with black filter paper as the background, facilitating straight-forward intensity threshold-based segmentation, e.g., by Otsu's method. This dataset facilitates time series analysis of germination time for barley kernels using either RGB image analysis, NIR spectral analysis, NIR-HSI analysis, or a combination hereof.
Most existing single-modal time series models rely solely on numerical series, which suffer from the limitations imposed by insufficient information. Recent studies have revealed that multimodal models can address the core issue by integrating textual information. However, these models focus on either historical or future textual information, overlooking the unique contributions each plays in time series forecasting. Besides, these models fail to grasp the intricate relationships between textual and time series data, constrained by their moderate capacity for multimodal comprehension. To tackle these challenges, we propose Dual-Forecaster, a pioneering multimodal time series model that combines both descriptively historical textual information and predictive textual insights, leveraging advanced multimodal comprehension capability empowered by three well-designed cross-modality alignment techniques. Our comprehensive evaluations on fifteen multimodal time series datasets demonstrate that Dual-Forecaster is a distinctly effective multimodal time series model that outperforms or is comparable to other state-of-the-art models, highlighting the superiority of integrating textual information for time series forecasting. This work opens new avenues in the integration of textual information with numerical time series data for multimodal time series analysis.
Multivariate long-term time series forecasting has been suffering from the challenge of capturing both temporal dependencies within variables and spatial correlations across variables simultaneously. Current approaches predominantly repurpose backbones from natural language processing or computer vision (e.g., Transformers), which fail to adequately address the unique properties of time series (e.g., periodicity). The research community lacks a dedicated backbone with temporal-specific inductive biases, instead relying on domain-agnostic backbones supplemented with auxiliary techniques (e.g., signal decomposition). We introduce FNF as the backbone and DBD as the architecture to provide excellent learning capabilities and optimal learning pathways for spatio-temporal modeling, respectively. Our theoretical analysis proves that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling, while information bottleneck theory demonstrates that DBD provides superior gradient flow and representation capacity compared to existing unified or sequential architectures. Our empirical evaluation across 11 public benchmark datasets spanning five domains (energy, meteorology, transportation, environment, and nature) confirms state-of-the-art performance with consistent hyperparameter settings. Notably, our approach achieves these results without any auxiliary techniques, suggesting that properly designed neural architectures can capture the inherent properties of time series, potentially transforming time series modeling in scientific and industrial applications.




Unsupervised domain adaptation (UDA) for time series data remains a critical challenge in deep learning, with traditional pseudo-labeling strategies failing to capture temporal patterns and channel-wise shifts between domains, producing sub-optimal pseudo-labels. As such, we introduce TransPL, a novel approach that addresses these limitations by modeling the joint distribution $P(\mathbf{X}, y)$ of the source domain through code transition matrices, where the codes are derived from vector quantization (VQ) of time series patches. Our method constructs class- and channel-wise code transition matrices from the source domain and employs Bayes' rule for target domain adaptation, generating pseudo-labels based on channel-wise weighted class-conditional likelihoods. TransPL offers three key advantages: explicit modeling of temporal transitions and channel-wise shifts between different domains, versatility towards different UDA scenarios (e.g., weakly-supervised UDA), and explainable pseudo-label generation. We validate TransPL's effectiveness through extensive analysis on four time series UDA benchmarks and confirm that it consistently outperforms state-of-the-art pseudo-labeling methods by a strong margin (6.1% accuracy improvement, 4.9% F1 improvement), while providing interpretable insights into the domain adaptation process through its learned code transition matrices.
Artefacts compromise clinical decision-making in the use of medical time series. Pulsatile waveforms offer probabilities for accurate artefact detection, yet most approaches rely on supervised manners and overlook patient-level distribution shifts. To address these issues, we introduce a generalised label-free framework, GenClean, for real-time artefact cleaning and leverage an in-house dataset of 180,000 ten-second arterial blood pressure (ABP) samples for training. We first investigate patient-level generalisation, demonstrating robust performances under both intra- and inter-patient distribution shifts. We further validate its effectiveness through challenging cross-disease cohort experiments on the MIMIC-III database. Additionally, we extend our method to photoplethysmography (PPG), highlighting its applicability to diverse medical pulsatile signals. Finally, its integration into ICM+, a clinical research monitoring software, confirms the real-time feasibility of our framework, emphasising its practical utility in continuous physiological monitoring. This work provides a foundational step toward precision medicine in improving the reliability of high-resolution medical time series analysis




This paper shows a comprehensive analysis of three algorithms (Time Series, Random Forest (RF) and Deep Reinforcement Learning) into three inventory models (the Lost Sales, Dual-Sourcing and Multi-Echelon Inventory Model). These methodologies are applied in the supermarket context. The main purpose is to analyse efficient methods for the data-driven. Their possibility, potential and current challenges are taken into consideration in this report. By comparing the results in each model, the effectiveness of each algorithm is evaluated based on several key performance indicators, including forecast accuracy, adaptability to market changes, and overall impact on inventory costs and customer satisfaction levels. The data visualization tools and statistical metrics are the indicators for the comparisons and show some obvious trends and patterns that can guide decision-making in inventory management. These tools enable managers to not only track the performance of different algorithms in real-time but also to drill down into specific data points to understand the underlying causes of inventory fluctuations. This level of detail is crucial for pinpointing inefficiencies and areas for improvement within the supply chain.