Abstract:Despite recent advances in insulin preparations and technology, adjusting insulin remains an ongoing challenge for the majority of people with type 1 diabetes (T1D) and longstanding type 2 diabetes (T2D). In this study, we propose the Adaptive Basal-Bolus Advisor (ABBA), a personalised insulin treatment recommendation approach based on reinforcement learning for individuals with T1D and T2D, performing self-monitoring blood glucose measurements and multiple daily insulin injection therapy. We developed and evaluated the ability of ABBA to achieve better time-in-range (TIR) for individuals with T1D and T2D, compared to a standard basal-bolus advisor (BBA). The in-silico test was performed using an FDA-accepted population, including 101 simulated adults with T1D and 101 with T2D. An in-silico evaluation shows that ABBA significantly improved TIR and significantly reduced both times below- and above-range, compared to BBA. ABBA's performance continued to improve over two months, whereas BBA exhibited only modest changes. This personalised method for adjusting insulin has the potential to further optimise glycaemic control and support people with T1D and T2D in their daily self-management. Our results warrant ABBA to be trialed for the first time in humans.
Abstract:Recent advances in long-term time series forecasting have introduced numerous complex prediction models that consistently outperform previously published architectures. However, this rapid progression raises concerns regarding inconsistent benchmarking and reporting practices, which may undermine the reliability of these comparisons. Our position emphasizes the need to shift focus away from pursuing ever-more complex models and towards enhancing benchmarking practices through rigorous and standardized evaluation methods. To support our claim, we first perform a broad, thorough, and reproducible evaluation of the top-performing models on the most popular benchmark by training 3,500+ networks over 14 datasets. Then, through a comprehensive analysis, we find that slight changes to experimental setups or current evaluation metrics drastically shift the common belief that newly published results are advancing the state of the art. Our findings suggest the need for rigorous and standardized evaluation methods that enable more substantiated claims, including reproducible hyperparameter setups and statistical testing.