What is Table Detection? Table detection is the process of identifying and extracting tables from documents or images.
Papers and Code
Jun 16, 2025
Abstract:This paper proposes a method for automatic GUI component detection for the IBM i system (formerly and still more commonly known as AS/400). We introduce a human-annotated dataset consisting of 1,050 system screen images, in which 381 images are screenshots of IBM i system screens in Japanese. Each image contains multiple components, including text labels, text boxes, options, tables, instructions, keyboards, and command lines. We then develop a detection system based on state-of-the-art deep learning models and evaluate different approaches using our dataset. The experimental results demonstrate the effectiveness of our dataset in constructing a system for component detection from GUI screens. By automatically detecting GUI components from the screen, AS400-DET has the potential to perform automated testing on systems that operate via GUI screens.
* Accepted at the IVSP 2025 conference
Via

Jun 16, 2025
Abstract:We introduce the Lecture Video Visual Objects (LVVO) dataset, a new benchmark for visual object detection in educational video content. The dataset consists of 4,000 frames extracted from 245 lecture videos spanning biology, computer science, and geosciences. A subset of 1,000 frames, referred to as LVVO_1k, has been manually annotated with bounding boxes for four visual categories: Table, Chart-Graph, Photographic-image, and Visual-illustration. Each frame was labeled independently by two annotators, resulting in an inter-annotator F1 score of 83.41%, indicating strong agreement. To ensure high-quality consensus annotations, a third expert reviewed and resolved all cases of disagreement through a conflict resolution process. To expand the dataset, a semi-supervised approach was employed to automatically annotate the remaining 3,000 frames, forming LVVO_3k. The complete dataset offers a valuable resource for developing and evaluating both supervised and semi-supervised methods for visual content detection in educational videos. The LVVO dataset is publicly available to support further research in this domain.
Via

Jun 09, 2025
Abstract:This article presents a large-scale effort to create a structured dataset of internal migration in Finland between 1800 and 1920 using digitized church moving records. These records, maintained by Evangelical-Lutheran parishes, document the migration of individuals and families and offer a valuable source for studying historical demographic patterns. The dataset includes over six million entries extracted from approximately 200,000 images of handwritten migration records. The data extraction process was automated using a deep learning pipeline that included layout analysis, table detection, cell classification, and handwriting recognition. The complete pipeline was applied to all images, resulting in a structured dataset suitable for research. The dataset can be used to study internal migration, urbanization, and family migration, and the spread of disease in preindustrial Finland. A case study from the Elim\"aki parish shows how local migration histories can be reconstructed. The work demonstrates how large volumes of handwritten archival material can be transformed into structured data to support historical and demographic research.
Via

Jun 10, 2025
Abstract:This paper presents a comprehensive analysis of an enhanced asynchronous AdaBoost framework for federated learning (FL), focusing on its application across five distinct domains: computer vision on edge devices, blockchain-based model transparency, on-device mobile personalization, IoT anomaly detection, and federated healthcare diagnostics. The proposed algorithm incorporates adaptive communication scheduling and delayed weight compensation to reduce synchronization frequency and communication overhead while preserving or improving model accuracy. We examine how these innovations improve communication efficiency, scalability, convergence, and robustness in each domain. Comparative metrics including training time, communication overhead, convergence iterations, and classification accuracy are evaluated using data and estimates derived from Oghlukyan's enhanced AdaBoost framework. Empirical results show, for example, training time reductions on the order of 20-35% and communication overhead reductions of 30-40% compared to baseline AdaBoost, with convergence achieved in significantly fewer boosting rounds. Tables and charts summarize these improvements by domain. Mathematical formulations of the adaptive scheduling rule and error-driven synchronization thresholds are provided. Overall, the enhanced AdaBoost exhibits markedly improved efficiency and robustness across diverse FL scenarios, suggesting broad applicability of the approach.
Via

Jun 09, 2025
Abstract:In this paper, we present a real-time egocentric trajectory prediction system for table tennis using event cameras. Unlike standard cameras, which suffer from high latency and motion blur at fast ball speeds, event cameras provide higher temporal resolution, allowing more frequent state updates, greater robustness to outliers, and accurate trajectory predictions using just a short time window after the opponent's impact. We collect a dataset of ping-pong game sequences, including 3D ground-truth trajectories of the ball, synchronized with sensor data from the Meta Project Aria glasses and event streams. Our system leverages foveated vision, using eye-gaze data from the glasses to process only events in the viewer's fovea. This biologically inspired approach improves ball detection performance and significantly reduces computational latency, as it efficiently allocates resources to the most perceptually relevant regions, achieving a reduction factor of 10.81 on the collected trajectories. Our detection pipeline has a worst-case total latency of 4.5 ms, including computation and perception - significantly lower than a frame-based 30 FPS system, which, in the worst case, takes 66 ms solely for perception. Finally, we fit a trajectory prediction model to the estimated states of the ball, enabling 3D trajectory forecasting in the future. To the best of our knowledge, this is the first approach to predict table tennis trajectories from an egocentric perspective using event cameras.
* IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Nashville (TN), USA, 2025; 5th International Workshop on
Event-Based Vision
Via

Jun 06, 2025
Abstract:Table-based question answering requires complex reasoning capabilities that current LLMs struggle to achieve with single-pass inference. Existing approaches, such as Chain-of-Thought reasoning and question decomposition, lack error detection mechanisms and discard problem-solving experiences, contrasting sharply with how humans tackle such problems. In this paper, we propose MAPLE (Multi-agent Adaptive Planning with Long-term mEmory), a novel framework that mimics human problem-solving through specialized cognitive agents working in a feedback-driven loop. MAPLE integrates 4 key components: (1) a Solver using the ReAct paradigm for reasoning, (2) a Checker for answer verification, (3) a Reflector for error diagnosis and strategy correction, and (4) an Archiver managing long-term memory for experience reuse and evolution. Experiments on WiKiTQ and TabFact demonstrate significant improvements over existing methods, achieving state-of-the-art performance across multiple LLM backbones.
* 26 pages, 10 figures
Via

Jun 04, 2025
Abstract:Over the past few years, table interpretation tasks have made significant progress due to their importance and the introduction of new technologies and benchmarks in the field. This work experiments with a hybrid approach for detecting relationships among columns of unlabeled tabular data, using a Knowledge Graph (KG) as a reference point, a task known as CPA. This approach leverages large language models (LLMs) while employing statistical analysis to reduce the search space of potential KG relations. The main modules of this approach for reducing the search space are domain and range constraints detection, as well as relation co-appearance analysis. The experimental evaluation on two benchmark datasets provided by the SemTab challenge assesses the influence of each module and the effectiveness of different state-of-the-art LLMs at various levels of quantization. The experiments were performed, as well as at different prompting techniques. The proposed methodology, which is publicly available on github, proved to be competitive with state-of-the-art approaches on these datasets.
Via

May 21, 2025
Abstract:Large Language Models (LLMs) have shown impressive capabilities in contextual understanding and reasoning. However, evaluating their performance across diverse scientific domains remains underexplored, as existing benchmarks primarily focus on general domains and fail to capture the intricate complexity of scientific data. To bridge this gap, we construct SciCUEval, a comprehensive benchmark dataset tailored to assess the scientific context understanding capability of LLMs. It comprises ten domain-specific sub-datasets spanning biology, chemistry, physics, biomedicine, and materials science, integrating diverse data modalities including structured tables, knowledge graphs, and unstructured texts. SciCUEval systematically evaluates four core competencies: Relevant information identification, Information-absence detection, Multi-source information integration, and Context-aware inference, through a variety of question formats. We conduct extensive evaluations of state-of-the-art LLMs on SciCUEval, providing a fine-grained analysis of their strengths and limitations in scientific context understanding, and offering valuable insights for the future development of scientific-domain LLMs.
* 25 pages, 4 figures
Via

May 05, 2025
Abstract:We present \textbf{SymbioticRAG}, a novel framework that fundamentally reimagines Retrieval-Augmented Generation~(RAG) systems by establishing a bidirectional learning relationship between humans and machines. Our approach addresses two critical challenges in current RAG systems: the inherently human-centered nature of relevance determination and users' progression from "unconscious incompetence" in query formulation. SymbioticRAG introduces a two-tier solution where Level 1 enables direct human curation of retrieved content through interactive source document exploration, while Level 2 aims to build personalized retrieval models based on captured user interactions. We implement Level 1 through three key components: (1)~a comprehensive document processing pipeline with specialized models for layout detection, OCR, and extraction of tables, formulas, and figures; (2)~an extensible retriever module supporting multiple retrieval strategies; and (3)~an interactive interface that facilitates both user engagement and interaction data logging. We experiment Level 2 implementation via a retriever strategy incorporated LLM summarized user intention from user interaction logs. To maintain high-quality data preparation, we develop a human-on-the-loop validation interface that improves pipeline output while advancing research in specialized extraction tasks. Evaluation across three scenarios (literature review, geological exploration, and education) demonstrates significant improvements in retrieval relevance and user satisfaction compared to traditional RAG approaches. To facilitate broader research and further advancement of SymbioticRAG Level 2 implementation, we will make our system openly accessible to the research community.
Via

Apr 14, 2025
Abstract:Data cleaning is a long-standing challenge in data management. While powerful logic and statistical algorithms have been developed to detect and repair data errors in tables, existing algorithms predominantly rely on domain-experts to first manually specify data-quality constraints specific to a given table, before data cleaning algorithms can be applied. In this work, we propose a new class of data-quality constraints that we call Semantic-Domain Constraints, which can be reliably inferred and automatically applied to any tables, without requiring domain-experts to manually specify on a per-table basis. We develop a principled framework to systematically learn such constraints from table corpora using large-scale statistical tests, which can further be distilled into a core set of constraints using our optimization framework, with provable quality guarantees. Extensive evaluations show that this new class of constraints can be used to both (1) directly detect errors on real tables in the wild, and (2) augment existing expert-driven data-cleaning techniques as a new class of complementary constraints. Our extensively labeled benchmark dataset with 2400 real data columns, as well as our code are available at https://github.com/qixuchen/AutoTest to facilitate future research.
* full version of a paper accepted to SIGMOD 2025
Via
