Table detection is the process of identifying and extracting tables from documents or images.
We investigate how large language models (LLMs) fail when tabular data in an otherwise canonical representation is subjected to semantic and structural distortions. Our findings reveal that LLMs lack an inherent ability to detect and correct subtle distortions in table representations. Only when provided with an explicit prior, via a system prompt, do models partially adjust their reasoning strategies and correct some distortions, though not consistently or completely. To study this phenomenon, we introduce a small, expert-curated dataset that explicitly evaluates LLMs on table question answering (TQA) tasks requiring an additional error-correction step prior to analysis. Our results reveal systematic differences in how LLMs ingest and interpret tabular information under distortion, with even SoTA models such as GPT-5.2 model exhibiting a drop of minimum 22% accuracy under distortion. These findings raise important questions for future research, particularly regarding when and how models should autonomously decide to realign tabular inputs, analogous to human behavior, without relying on explicit prompts or tabular data pre-processing.
Bahnar, a minority language spoken across Vietnam, Cambodia, and Laos, faces significant preservation challenges due to limited research and data availability. This study addresses the critical need for accurate digitization of Bahnar language documents through optical character recognition (OCR) technology. Digitizing scanned paper documents poses significant challenges, as degraded image quality from broken or blurred areas introduces considerable OCR errors that compromise information retrieval systems. We propose a comprehensive approach combining advanced table and non-table detection techniques with probability-based post-processing heuristics to enhance recognition accuracy. Our method first applies detection algorithms to improve input data quality, then employs probabilistic error correction on OCR output. Experimental results indicate a substantial improvement, with recognition accuracy increasing from 72.86% to 79.26%. This work contributes valuable resources for Bahnar language preservation and provides a framework applicable to other minority language digitization efforts.
Table Question Answering (TableQA) benefits significantly from table pruning, which extracts compact sub-tables by eliminating redundant cells to streamline downstream reasoning. However, existing pruning methods typically rely on sequential revisions driven by unreliable critique signals, often failing to detect the loss of answer-critical data. To address this limitation, we propose TabTrim, a novel table pruning framework which transforms table pruning from sequential revisions to gold trajectory-supervised parallel search. TabTrim derives a gold pruning trajectory using the intermediate sub-tables in the execution process of gold SQL queries, and trains a pruner and a verifier to make the step-wise pruning result align with the gold pruning trajectory. During inference, TabTrim performs parallel search to explore multiple candidate pruning trajectories and identify the optimal sub-table. Extensive experiments demonstrate that TabTrim achieves state-of-the-art performance across diverse tabular reasoning tasks: TabTrim-8B reaches 73.5% average accuracy, outperforming the strongest baseline by 3.2%, including 79.4% on WikiTQ and 61.2% on TableBench.
Kolmogorov--Arnold Networks (KAN) replace scalar weights by learnable univariate functions, often implemented with B-splines. This design can be accurate and interpretable, but it makes inference expensive on CPU because each layer requires many spline evaluations. Standard quantization toolchains are also hard to apply because the main computation is not a matrix multiply but repeated spline basis evaluation. This paper introduces LUT-KAN, a segment-wise lookup-table (LUT) compilation and quantization method for PyKAN-style KAN layers. LUT-KAN converts each edge function into a per-segment LUT with affine int8/uint8 quantization and linear interpolation. The method provides an explicit and reproducible inference contract, including boundary conventions and out-of-bounds (OOB) policies. We propose an ``honest baseline'' methodology for speed evaluation: B-spline evaluation and LUT evaluation are compared under the same backend optimization (NumPy vs NumPy and Numba vs Numba), which separates representation gains from vectorization and JIT effects. Experiments include controlled sweeps over LUT resolution L in 16, 32, 64, 128 and two quantization schemes (symmetric int8 and asymmetric uint8). We report accuracy, speed, and memory metrics with mean and standard deviation across multiple seeds. A two-by-two OOB robustness matrix evaluates behavior under different boundary modes and OOB policies. In a case study, we compile a trained KAN model for DoS attack detection (CICIDS2017 pipeline) into LUT artifacts. The compiled model preserves classification quality (F1 drop below 0.0002) while reducing steady-state CPU inference latency by 12x under NumPy and 10x under Numba backends (honest baseline). The memory overhead is approximately 10x at L=64. All code and artifacts are publicly available with fixed release tags for reproducibility.
Structured data extraction from tables plays a crucial role in document image analysis for scanned documents and digital archives. Although many methods have been proposed to detect table structures and extract cell contents, accurately identifying table segment boundaries (rows and columns) remains challenging, particularly in low-resolution or noisy images. In many real-world scenarios, table data are incomplete or degraded, limiting the adaptability of transformer-based methods to noisy inputs. Mask-based edge detection techniques have shown greater robustness under such conditions, as their sensitivity can be adjusted through threshold tuning; however, existing approaches typically apply masks directly to images, leading to noise sensitivity, resolution loss, or high computational cost. This paper proposes a novel multi-scale signal-processing method for detecting table edges from table masks. Row and column transitions are modeled as one-dimensional signals and processed using Gaussian convolution with progressively increasing variances, followed by statistical thresholding to suppress noise while preserving stable structural edges. Detected signal peaks are mapped back to image coordinates to obtain accurate segment boundaries. Experimental results show that applying the proposed approach to column edge detection improves Cell-Aware Segmentation Accuracy (CASA) a layout-aware metric evaluating both textual correctness and correct cell placement from 67% to 76% on the PubLayNet-1M benchmark when using TableNet with PyTesseract OCR. The method is robust to resolution variations through zero-padding and scaling strategies and produces optimized structured tabular outputs suitable for downstream analysis.
Automatically detecting and classifying strokes in table tennis video can streamline training workflows, enrich broadcast overlays, and enable fine-grained performance analytics. For this to be possible, annotated video data of table tennis is needed. We extend the public OpenTTGames dataset with highly detailed, frame-accurate shot type annotations (forehand, backhand with subtypes), player posture labels (body lean and leg stance), and rally outcome tags at point end. OpenTTGames is a set of recordings from the side of the table with official labels for bounces, when the ball is above the net, or hitting the net. The dataset already contains ball coordinates near events, which are either "bounce", "net", or "empty_event" in the original OpenTTGames dataset, and semantic masks (humans, table, scoreboard). Our extension adds the types of stroke to the events and a per-player taxonomy so models can move beyond event spotting toward tactical understanding (e.g., whether a stroke is likely to win the point or set up an advantage). We provide a compact coding scheme and code-assisted labeling procedure to support reproducible annotations and baselines for fine-grained stroke understanding in racket sports. This fills a practical gap in the community, where many prior video resources are either not publicly released or carry restrictive/unclear licenses that hinder reuse and benchmarking. Our annotations are released under the same CC BY-NC-SA 4.0 license as OpenTTGames, allowing free non-commercial use, modification, and redistribution, with appropriate attribution.
Ontology-based knowledge graph (KG) construction is a core technology that enables multidimensional understanding and advanced reasoning over domain knowledge. Industrial standards, in particular, contain extensive technical information and complex rules presented in highly structured formats that combine tables, scopes of application, constraints, exceptions, and numerical calculations, making KG construction especially challenging. In this study, we propose a method that organizes such documents into a hierarchical semantic structure, decomposes sentences and tables into atomic propositions derived from conditional and numerical rules, and integrates them into an ontology-knowledge graph through LLM-based triple extraction. Our approach captures both the hierarchical and logical structures of documents, effectively representing domain-specific semantics that conventional methods fail to reflect. To verify its effectiveness, we constructed rule, table, and multi-hop QA datasets, as well as a toxic clause detection dataset, from industrial standards, and implemented an ontology-aware KG-RAG framework for comparative evaluation. Experimental results show that our method achieves significant performance improvements across all QA types compared to existing KG-RAG approaches. This study demonstrates that reliable and scalable knowledge representation is feasible even for industrial documents with intertwined conditions, constraints, and scopes, contributing to future domain-specific RAG development and intelligent document management.




Table extraction (TE) is a key challenge in visual document understanding. Traditional approaches detect tables first, then recognize their structure. Recently, interest has surged in developing methods, such as vision-language models (VLMs), that can extract tables directly in their full page or document context. However, progress has been difficult to demonstrate due to a lack of annotated data. To address this, we create a new large-scale dataset, PubTables-v2. PubTables-v2 supports a number of current challenging table extraction tasks. Notably, it is the first large-scale benchmark for multi-page table structure recognition. We demonstrate its usefulness by evaluating domain-specialized VLMs on these tasks and highlighting current progress. Finally, we use PubTables-v2 to create the Page-Object Table Transformer (POTATR), an image-to-graph extension of the Table Transformer to comprehensive page-level TE. Data, code, and trained models will be released.
This study introduces a lightweight perimeter tracking method designed for micro UAV teams operating over wildfire environments under limited bandwidth conditions. Thermal image frames generate coarse hot region masks through adaptive thresholding and morphological refinement, while RGB frames contribute edge cues and suppress texture related false detections using gradient based filtering. A rule level merging strategy selects boundary candidates and simplifies them via the Ramer Douglas Peucker algorithm. The system incorporates periodic beacons and an inertial feedback loop that maintains trajectory stability in the presence of GPS degradation. The guidance loop targets sub 50 ms latency on embedded System on Chip (SoC) platforms by constraining per frame pixel operations and precomputing gradient tables. Small scale simulations demonstrate reductions in average path length and boundary jitter compared to a pure edge tracking baseline, while maintaining environmental coverage measured through intersection merge analysis. Battery consumption and computational utilization confirm the feasibility of achieving 10, 15 m/s forward motion on standard micro platforms. This approach enables rapid deployment in the field, requiring robust sensing and minimal communications for emergency reconnaissance applications.
Document parsing is a core task in document intelligence, supporting applications such as information extraction, retrieval-augmented generation, and automated document analysis. However, real-world documents often feature complex layouts with multi-level tables, embedded images or formulas, and cross-page structures, which remain challenging for existing OCR systems. We introduce MonkeyOCR v1.5, a unified vision-language framework that enhances both layout understanding and content recognition through a two-stage pipeline. The first stage employs a large multimodal model to jointly predict layout and reading order, leveraging visual information to ensure sequential consistency. The second stage performs localized recognition of text, formulas, and tables within detected regions, maintaining high visual fidelity while reducing error propagation. To address complex table structures, we propose a visual consistency-based reinforcement learning scheme that evaluates recognition quality via render-and-compare alignment, improving structural accuracy without manual annotations. Additionally, two specialized modules, Image-Decoupled Table Parsing and Type-Guided Table Merging, are introduced to enable reliable parsing of tables containing embedded images and reconstruction of tables crossing pages or columns. Comprehensive experiments on OmniDocBench v1.5 demonstrate that MonkeyOCR v1.5 achieves state-of-the-art performance, outperforming PPOCR-VL and MinerU 2.5 while showing exceptional robustness in visually complex document scenarios. A trial link can be found at https://github.com/Yuliang-Liu/MonkeyOCR .