Plants need regular and the appropriate amount of watering to thrive and survive. While agricultural robots exist that can spray water on plants and crops such as the , they are expensive and have limited mobility and/or functionality. We introduce a novel autonomous mobile plant watering robot that uses a 6 degree of freedom (DOF) manipulator, connected to a 4 wheel drive alloy chassis, to be able to hold a garden hose, recognize and detect plants, and to water them with the appropriate amount of water by being able to insert a soil humidity/moisture sensor into the soil. The robot uses Jetson Nano and Arduino microcontroller and real sense camera to perform computer vision to detect plants using real-time YOLOv5 with the Pl@ntNet-300K dataset. The robot uses LIDAR for object and collision avoideance and does not need to move on a pre-defined path and can keep track of which plants it has watered. We provide the Denavit-Hartenberg (DH) Table, forward kinematics, differential driving kinematics, and inverse kinematics along with simulation and experiment results