Abstract:Over the past few years, table interpretation tasks have made significant progress due to their importance and the introduction of new technologies and benchmarks in the field. This work experiments with a hybrid approach for detecting relationships among columns of unlabeled tabular data, using a Knowledge Graph (KG) as a reference point, a task known as CPA. This approach leverages large language models (LLMs) while employing statistical analysis to reduce the search space of potential KG relations. The main modules of this approach for reducing the search space are domain and range constraints detection, as well as relation co-appearance analysis. The experimental evaluation on two benchmark datasets provided by the SemTab challenge assesses the influence of each module and the effectiveness of different state-of-the-art LLMs at various levels of quantization. The experiments were performed, as well as at different prompting techniques. The proposed methodology, which is publicly available on github, proved to be competitive with state-of-the-art approaches on these datasets.
Abstract:The increasing complexity of natural disaster incidents demands innovative technological solutions to support first responders in their efforts. This paper introduces the TRIFFID system, a comprehensive technical framework that integrates unmanned ground and aerial vehicles with advanced artificial intelligence functionalities to enhance disaster response capabilities across wildfires, urban floods, and post-earthquake search and rescue missions. By leveraging state-of-the-art autonomous navigation, semantic perception, and human-robot interaction technologies, TRIFFID provides a sophisticated system com- posed of the following key components: hybrid robotic platform, centralized ground station, custom communication infrastructure, and smartphone application. The defined research and development activities demonstrate how deep neural networks, knowledge graphs, and multimodal information fusion can enable robots to autonomously navigate and analyze disaster environ- ments, reducing personnel risks and accelerating response times. The proposed system enhances emergency response teams by providing advanced mission planning, safety monitoring, and adaptive task execution capabilities. Moreover, it ensures real- time situational awareness and operational support in complex and risky situations, facilitating rapid and precise information collection and coordinated actions.