The increasing penetration of photovoltaic (PV) generation introduces significant uncertainty into power system operation, necessitating forecasting approaches that extend beyond deterministic point predictions. This paper proposes an any-quantile probabilistic forecasting framework for multi-regional PV power generation based on the Any-Quantile Recurrent Neural Network (AQ-RNN). The model integrates an any-quantile forecasting paradigm with a dual-track recurrent architecture that jointly processes series-specific and cross-regional contextual information, supported by dilated recurrent cells, patch-based temporal modeling, and a dynamic ensemble mechanism. The proposed framework enables the estimation of calibrated conditional quantiles at arbitrary probability levels within a single trained model and effectively exploits spatial dependencies to enhance robustness at the system level. The approach is evaluated using 30 years of hourly PV generation data from 259 European regions and compared against established statistical and neural probabilistic baselines. The results demonstrate consistent improvements in forecast accuracy, calibration, and prediction interval quality, underscoring the suitability of the proposed method for uncertainty-aware energy management and operational decision-making in renewable-dominated power systems.
Reliable terrain perception is a critical prerequisite for the deployment of humanoid robots in unstructured, human-centric environments. While traditional systems often rely on manually engineered, single-sensor pipelines, this paper presents a learning-based framework that uses an intermediate, robot-centric heightmap representation. A hybrid Encoder-Decoder Structure (EDS) is introduced, utilizing a Convolutional Neural Network (CNN) for spatial feature extraction fused with a Gated Recurrent Unit (GRU) core for temporal consistency. The architecture integrates multimodal data from an Intel RealSense depth camera, a LIVOX MID-360 LiDAR processed via efficient spherical projection, and an onboard IMU. Quantitative results demonstrate that multimodal fusion improves reconstruction accuracy by 7.2% over depth-only and 9.9% over LiDAR-only configurations. Furthermore, the integration of a 3.2 s temporal context reduces mapping drift.
Prediction of crystal system from X-ray diffraction (XRD) spectra is a critical task in materials science, particularly for perovskite materials which are known for their diverse applications in photovoltaics, optoelectronics, and catalysis. In this study, we present a machine learning (ML)-driven framework that leverages advanced models, including Time Series Forest (TSF), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a simple feedforward neural network (NN), to classify crystal systems, point groups, and space groups from XRD data of perovskite materials. To address class imbalance and enhance model robustness, we integrated feature augmentation strategies such as Synthetic Minority Over-sampling Technique (SMOTE), class weighting, jittering, and spectrum shifting, along with efficient data preprocessing pipelines. The TSF model with SMOTE augmentation achieved strong performance for crystal system prediction, with a Matthews correlation coefficient (MCC) of 0.9, an F1 score of 0.92, and an accuracy of 97.76%. For point and space group prediction, balanced accuracies above 95% were obtained. The model demonstrated high performance for symmetry-distinct classes, including cubic crystal systems, point groups 3m and m-3m, and space groups Pnma and Pnnn. This work highlights the potential of ML for XRD-based structural characterization and accelerated discovery of perovskite materials
In this paper, we present a neuro-inspired approach to reservoir computing (RC) in which a network of in vitro cultured cortical neurons serves as the physical reservoir. Rather than relying on artificial recurrent models to approximate neural dynamics, our biological reservoir computing (BRC) system leverages the spontaneous and stimulus-evoked activity of living neural circuits as its computational substrate. A high-density multi-electrode array (HD-MEA) provides simultaneous stimulation and readout across hundreds of channels: input patterns are delivered through selected electrodes, while the remaining ones capture the resulting high-dimensional neural responses, yielding a biologically grounded feature representation. A linear readout layer (single-layer perceptron) is then trained to classify these reservoir states, enabling the living neural network to perform static visual pattern-recognition tasks within a computer-vision framework. We evaluate the system across a sequence of tasks of increasing difficulty, ranging from pointwise stimuli to oriented bars, clock-digit-like shapes, and handwritten digits from the MNIST dataset. Despite the inherent variability of biological neural responses-arising from noise, spontaneous activity, and inter-session differences-the system consistently generates high-dimensional representations that support accurate classification. These results demonstrate that in vitro cortical networks can function as effective reservoirs for static visual pattern recognition, opening new avenues for integrating living neural substrates into neuromorphic computing frameworks. More broadly, this work contributes to the effort to incorporate biological principles into machine learning and supports the goals of neuro-inspired vision by illustrating how living neural systems can inform the design of efficient and biologically grounded computational models.
Hand gesture recognition (HGR) is a fundamental technology in human computer interaction (HCI).In particular, HGR based on Doppler radar signals is suited for in-vehicle interfaces and robotic systems, necessitating lightweight and computationally efficient recognition techniques. However, conventional deep learning-based methods still suffer from high computational costs. To address this issue, we propose an Echo State Network (ESN) approach for radar-based HGR, using frequency-modulated-continuous-wave (FMCW) radar signals. Raw radar data is first converted into feature maps, such as range-time and Doppler-time maps, which are then fed into one or more recurrent neural network-based reservoirs. The obtained reservoir states are processed by readout classifiers, including ridge regression, support vector machines, and random forests. Comparative experiments demonstrate that our method outperforms existing approaches on an 11-class HGR task using the Soli dataset and surpasses existing deep learning models on a 4-class HGR task using the Dop-NET dataset. The results indicate that parallel processing using multi-reservoir ESNs are effective for recognizing temporal patterns from the multiple different feature maps in the time-space and time-frequency domains. Our ESN approaches achieve high recognition performance with low computational cost in HGR, showing great potential for more advanced HCI technologies, especially in resource-constrained environments.
Adaptive cognition requires structured internal models representing objects and their relations. Predictive neural networks are often proposed to form such "world models", yet their underlying mechanisms remain unclear. One hypothesis is that action-conditioned sequential prediction suffices for learning such world models. In this work, we investigate this possibility in a minimal in-silico setting. Sequentially sampling tokens from 2D continuous token scenes, a recurrent neural network is trained to predict the upcoming token from current input and a saccade-like displacement. On novel scenes, prediction accuracy improves across the sequence, indicating in-context learning. Decoding analyses reveal path integration and dynamic binding of token identity to position. Interventional analyses show that new bindings can be learned late in sequence and that out-of-distribution bindings can be learned. Together, these results demonstrate how structured representations that rely on flexible binding emerge to support prediction, offering a mechanistic account of sequential world modeling relevant to cognitive science.
How do neural networks trained over sequences acquire the ability to perform structured operations, such as arithmetic, geometric, and algorithmic computation? To gain insight into this question, we introduce the sequential group composition task. In this task, networks receive a sequence of elements from a finite group encoded in a real vector space and must predict their cumulative product. The task can be order-sensitive and requires a nonlinear architecture to be learned. Our analysis isolates the roles of the group structure, encoding statistics, and sequence length in shaping learning. We prove that two-layer networks learn this task one irreducible representation of the group at a time in an order determined by the Fourier statistics of the encoding. These networks can perfectly learn the task, but doing so requires a hidden width exponential in the sequence length $k$. In contrast, we show how deeper models exploit the associativity of the task to dramatically improve this scaling: recurrent neural networks compose elements sequentially in $k$ steps, while multilayer networks compose adjacent pairs in parallel in $\log k$ layers. Overall, the sequential group composition task offers a tractable window into the mechanics of deep learning.
Reconstructing high-dimensional spatiotemporal fields from sparse point-sensor measurements is a central challenge in learning parametric PDE dynamics. Existing approaches often struggle to generalize across trajectories and parameter settings, or rely on discretization-tied decoders that do not naturally transfer across meshes and resolutions. We propose STRIDE (Spatio-Temporal Recurrent Implicit DEcoder), a two-stage framework that maps a short window of sensor measurements to a latent state with a temporal encoder and reconstructs the field at arbitrary query locations with a modulated implicit neural representation (INR) decoder. Using the Fourier Multi-Component and Multi-Layer Neural Network (FMMNN) as the INR backbone improves representation of complex spatial fields and yields more stable optimization than sine-based INRs. We provide a conditional theoretical justification: under stable delay observability of point measurements on a low-dimensional parametric invariant set, the reconstruction operator factors through a finite-dimensional embedding, making STRIDE-type architectures natural approximators. Experiments on four challenging benchmarks spanning chaotic dynamics and wave propagation show that STRIDE outperforms strong baselines under extremely sparse sensing, supports super-resolution, and remains robust to noise.
Online handwritten character recognition leverages stroke order and dynamic features, which generally provide higher accuracy and robustness compared with offline recognition. However, in practical applications, rotational deformations can disrupt the spatial layout of strokes, substantially reducing recognition accuracy. Extracting rotation-invariant features therefore remains a challenging open problem. In this work, we employ the Sliding Window Path Signature (SW-PS) to capture local structural features of characters, and introduce the lightweight Linear Recurrent Units (LRU) as the classifier. The LRU combine the fast incremental processing capability of recurrent neural networks (RNN) with the efficient parallel training of state space models (SSM), while reliably modelling dynamic stroke characteristics. We conducted recognition experiments with random rotation angle up to $\pm 180^{\circ}$ on three subsets of the CASIA-OLHWDB1.1 dataset: digits, English upper letters, and Chinese radicals. The accuracies achieved after ensemble learning were $99.62\%$, $96.67\%$, and $94.33\%$, respectively. Experimental results demonstrate that the proposed SW-PS+LRU framework consistently surpasses competing models in both convergence speed and test accuracy.
Manual endoscopic submucosal dissection (ESD) is technically demanding, and existing single-segment robotic tools offer limited dexterity. These limitations motivate the development of more advanced solutions. To address this, DESectBot, a novel dual segment continuum robot with a decoupled structure and integrated surgical forceps, enabling 6 degrees of freedom (DoFs) tip dexterity for improved lesion targeting in ESD, was developed in this work. Deep learning controllers based on gated recurrent units (GRUs) for simultaneous tip position and orientation control, effectively handling the nonlinear coupling between continuum segments, were proposed. The GRU controller was benchmarked against Jacobian based inverse kinematics, model predictive control (MPC), a feedforward neural network (FNN), and a long short-term memory (LSTM) network. In nested-rectangle and Lissajous trajectory tracking tasks, the GRU achieved the lowest position/orientation RMSEs: 1.11 mm/ 4.62° and 0.81 mm/ 2.59°, respectively. For orientation control at a fixed position (four target poses), the GRU attained a mean RMSE of 0.14 mm and 0.72°, outperforming all alternatives. In a peg transfer task, the GRU achieved a 100% success rate (120 success/120 attempts) with an average transfer time of 11.8s, the STD significantly outperforms novice-controlled systems. Additionally, an ex vivo ESD demonstration grasping, elevating, and resecting tissue as the scalpel completed the cut confirmed that DESectBot provides sufficient stiffness to divide thick gastric mucosa and an operative workspace adequate for large lesions.These results confirm that GRU-based control significantly enhances precision, reliability, and usability in ESD surgical training scenarios.