Lipreading has emerged as an increasingly important research area for developing robust speech recognition systems and assistive technologies for the hearing-impaired. However, non-English resources for visual speech recognition remain limited. We introduce LRW-Persian, the largest in-the-wild Persian word-level lipreading dataset, comprising $743$ target words and over $414{,}000$ video samples extracted from more than $1{,}900$ hours of footage across $67$ television programs. Designed as a benchmark-ready resource, LRW-Persian provides speaker-disjoint training and test splits, wide regional and dialectal coverage, and rich per-clip metadata including head pose, age, and gender. To ensure large-scale data quality, we establish a fully automated end-to-end curation pipeline encompassing transcription based on Automatic Speech Recognition(ASR), active-speaker localization, quality filtering, and pose/mask screening. We further fine-tune two widely used lipreading architectures on LRW-Persian, establishing reference performance and demonstrating the difficulty of Persian visual speech recognition. By filling a critical gap in low-resource languages, LRW-Persian enables rigorous benchmarking, supports cross-lingual transfer, and provides a foundation for advancing multimodal speech research in underrepresented linguistic contexts. The dataset is publicly available at: https://lrw-persian.vercel.app.
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
Pre-trained transformer-based models have significantly advanced automatic speech recognition (ASR), yet they remain sensitive to accent and dialectal variations, resulting in elevated word error rates (WER) in linguistically diverse languages such as English and Persian. To address this challenge, we propose an accent-invariant ASR framework that integrates accent and dialect classification into the recognition pipeline. Our approach involves training a spectrogram-based classifier to capture accent-specific cues, masking the regions most influential to its predictions, and using the masked spectrograms for data augmentation. This enhances the robustness of ASR models against accent variability. We evaluate the method using both English and Persian speech. For Persian, we introduce a newly collected dataset spanning multiple regional accents, establishing the first systematic benchmark for accent variation in Persian ASR that fills a critical gap in multilingual speech research and provides a foundation for future studies on low-resource, linguistically diverse languages. Experimental results with the Whisper model demonstrate that our masking and augmentation strategy yields substantial WER reductions in both English and Persian settings, confirming the effectiveness of the approach. This research advances the development of multilingual ASR systems that are resilient to accent and dialect diversity. Code and dataset are publicly available at: https://github.com/MH-Sameti/Accent_invariant_ASR
Sentiment analysis is a key task in Natural Language Processing (NLP), enabling the extraction of meaningful insights from user opinions across various domains. However, performing sentiment analysis in Persian remains challenging due to the scarcity of labeled datasets, limited preprocessing tools, and the lack of high-quality embeddings and feature extraction methods. To address these limitations, we propose a hybrid approach that integrates machine learning (ML) and deep learning (DL) techniques for Persian aspect-based sentiment analysis (ABSA). In particular, we utilize polarity scores from multilingual BERT as additional features and incorporate them into a decision tree classifier, achieving an accuracy of 93.34%-surpassing existing benchmarks on the Pars-ABSA dataset. Additionally, we introduce a Persian synonym and entity dictionary, a novel linguistic resource that supports text augmentation through synonym and named entity replacement. Our results demonstrate the effectiveness of hybrid modeling and feature augmentation in advancing sentiment analysis for low-resource languages such as Persian.
Handwritten text recognition (HTR) for Arabic-script languages still lags behind Latin-script HTR, despite recent advances in model architectures, datasets, and benchmarks. We show that data quality is a significant limiting factor in many published datasets and propose CER-HV (CER-based Ranking with Human Verification) as a framework to detect and clean label errors. CER-HV combines a CER-based noise detector, built on a carefully configured Convolutional Recurrent Neural Network (CRNN) with early stopping to avoid overfitting noisy samples, and a human-in-the-loop (HITL) step that verifies high-ranking samples. The framework reveals that several existing datasets contain previously underreported problems, including transcription, segmentation, orientation, and non-text content errors. These have been identified with up to 90 percent precision in the Muharaf and 80-86 percent in the PHTI datasets. We also show that our CRNN achieves state-of-the-art performance across five of the six evaluated datasets, reaching 8.45 percent Character Error Rate (CER) on KHATT (Arabic), 8.26 percent on PHTI (Pashto), 10.66 percent on Ajami, and 10.11 percent on Muharaf (Arabic), all without any data cleaning. We establish a new baseline of 11.3 percent CER on the PHTD (Persian) dataset. Applying CER-HV improves the evaluation CER by 0.3-0.6 percent on the cleaner datasets and 1.0-1.8 percent on the noisier ones. Although our experiments focus on documents written in an Arabic-script language, including Arabic, Persian, Urdu, Ajami, and Pashto, the framework is general and can be applied to other text recognition datasets.
This study presents a comprehensive comparative evaluation of four state-of-the-art Large Language Models (LLMs)--Claude 3.7 Sonnet, DeepSeek-V3, Gemini 2.0 Flash, and GPT-4o--for sentiment analysis and emotion detection in Persian social media texts. Comparative analysis among LLMs has witnessed a significant rise in recent years, however, most of these analyses have been conducted on English language tasks, creating gaps in understanding cross-linguistic performance patterns. This research addresses these gaps through rigorous experimental design using balanced Persian datasets containing 900 texts for sentiment analysis (positive, negative, neutral) and 1,800 texts for emotion detection (anger, fear, happiness, hate, sadness, surprise). The main focus was to allow for a direct and fair comparison among different models, by using consistent prompts, uniform processing parameters, and by analyzing the performance metrics such as precision, recall, F1-scores, along with misclassification patterns. The results show that all models reach an acceptable level of performance, and a statistical comparison of the best three models indicates no significant differences among them. However, GPT-4o demonstrated a marginally higher raw accuracy value for both tasks, while Gemini 2.0 Flash proved to be the most cost-efficient. The findings indicate that the emotion detection task is more challenging for all models compared to the sentiment analysis task, and the misclassification patterns can represent some challenges in Persian language texts. These findings establish performance benchmarks for Persian NLP applications and offer practical guidance for model selection based on accuracy, efficiency, and cost considerations, while revealing cultural and linguistic challenges that require consideration in multilingual AI system deployment.
Musical instrument classification is essential for music information retrieval (MIR) and generative music systems. However, research on non-Western traditions, particularly Persian music, remains limited. We address this gap by introducing a new dataset of isolated recordings covering seven traditional Persian instruments, two common but originally non-Persian instruments (i.e., violin, piano), and vocals. We propose a culturally informed data augmentation strategy that generates realistic polyphonic mixtures from monophonic samples. Using the MERT model (Music undERstanding with large-scale self-supervised Training) with a classification head, we evaluate our approach with out-of-distribution data which was obtained by manually labeling segments of traditional songs. On real-world polyphonic Persian music, the proposed method yielded the best ROC-AUC (0.795), highlighting complementary benefits of tonal and temporal coherence. These results demonstrate the effectiveness of culturally grounded augmentation for robust Persian instrument recognition and provide a foundation for culturally inclusive MIR and diverse music generation systems.
We introduced PerCoR (Persian Commonsense Reasoning), the first large-scale Persian benchmark for commonsense reasoning. PerCoR contains 106K multiple-choice sentence-completion problems drawn from more than forty news, cultural, and other web sources. We introduce a novel conjunction-based segmentation strategy to generate coherent sentence-completion pairs, enabling broad topical and structural diversity. To create challenging distractors, we propose DRESS-AF (Distractor Ranking via Embedding Similarity Scoring and Adversarial Filtering), a generation-free adversarial filtering method that selects distractors from the pool of gold continuations while maximising model confusion. Human annotators score 89% on PerCoR, while OpenAI-o3 achieves the highest performance at 92.18%, followed closely by Claude-Sonnet-3.7 (91.17%). The strongest open-source model, DeepSeek-R1, reaches 82.51%, underscoring both the dataset's difficulty and the remaining performance gap in Persian commonsense reasoning. We further show that DRESS-AF transfers to the English HellaSwag benchmark, increasing its difficulty without hurting human solvability. The dataset is available at https://huggingface.co/datasets/MCINext/PerCoR.
Data quality and its effective selection are fundamental to improving the performance of machine translation models, serving as cornerstones for achieving robust and reliable translation systems. This paper presents a data selection methodology specifically designed for fine-tuning machine translation systems, which leverages the synergy between a learner model and a pre-trained reference model to enhance overall training effectiveness. By defining a learnability score, our approach systematically evaluates the utility of data points for training, ensuring that only the most relevant and impactful examples contribute to the fine-tuning process. Furthermore, our method employs a batch selection strategy which considers interdependencies among data points, optimizing the efficiency of the training process while maintaining a focus on data relevance. Experiments on English to Persian and several other language pairs using an mBART model fine-tuned on the CCMatrix dataset demonstrate that our method can achieve up to a fivefold improvement in data efficiency compared to an iid baseline. Experimental results indicate that our approach improves computational efficiency by 24 when utilizing cached embeddings, as it requires fewer training data points. Additionally, it enhances generalization, resulting in superior translation performance compared to random selection method.
The recent and ongoing expansion of marine infrastructure, including offshore wind farms, oil and gas platforms, artificial islands, and aquaculture facilities, highlights the need for effective monitoring systems. The development of robust models for offshore infrastructure detection relies on comprehensive, balanced datasets, but falls short when samples are scarce, particularly for underrepresented object classes, shapes, and sizes. By training deep learning-based YOLOv10 object detection models with a combination of synthetic and real Sentinel-1 satellite imagery acquired in the fourth quarter of 2023 from four regions (Caspian Sea, South China Sea, Gulf of Guinea, and Coast of Brazil), this study investigates the use of synthetic training data to enhance model performance. We evaluated this approach by applying the model to detect offshore platforms in three unseen regions (Gulf of Mexico, North Sea, Persian Gulf) and thereby assess geographic transferability. This region-holdout evaluation demonstrated that the model generalises beyond the training areas. In total, 3,529 offshore platforms were detected, including 411 in the North Sea, 1,519 in the Gulf of Mexico, and 1,593 in the Persian Gulf. The model achieved an F1 score of 0.85, which improved to 0.90 upon incorporating synthetic data. We analysed how synthetic data enhances the representation of unbalanced classes and overall model performance, taking a first step toward globally transferable detection of offshore infrastructure. This study underscores the importance of balanced datasets and highlights synthetic data generation as an effective strategy to address common challenges in remote sensing, demonstrating the potential of deep learning for scalable, global offshore infrastructure monitoring.