Luleå University of Technology
Abstract:The digitization of historical manuscripts presents significant challenges for Handwritten Text Recognition (HTR) systems, particularly when dealing with small, author-specific collections that diverge from the training data distributions. Handwritten Text Generation (HTG) techniques, which generate synthetic data tailored to specific handwriting styles, offer a promising solution to address these challenges. However, the effectiveness of various HTG models in enhancing HTR performance, especially in low-resource transcription settings, has not been thoroughly evaluated. In this work, we systematically compare three state-of-the-art styled HTG models (representing the generative adversarial, diffusion, and autoregressive paradigms for HTG) to assess their impact on HTR fine-tuning. We analyze how visual and linguistic characteristics of synthetic data influence fine-tuning outcomes and provide quantitative guidelines for selecting the most effective HTG model. The results of our analysis provide insights into the current capabilities of HTG methods and highlight key areas for further improvement in their application to low-resource HTR.
Abstract:This paper presents an intervention study on the effects of the combined methods of (1) the Socratic method, (2) Chain of Thought (CoT) reasoning, (3) simplified gamification and (4) formative feedback on university students' Maths learning driven by large language models (LLMs). We call our approach Mathematics Explanations through Games by AI LLMs (MEGA). Some students struggle with Maths and as a result avoid Math-related discipline or subjects despite the importance of Maths across many fields, including signal processing. Oftentimes, students' Maths difficulties stem from suboptimal pedagogy. We compared the MEGA method to the traditional step-by-step (CoT) method to ascertain which is better by using a within-group design after randomly assigning questions for the participants, who are university students. Samples (n=60) were randomly drawn from each of the two test sets of the Grade School Math 8K (GSM8K) and Mathematics Aptitude Test of Heuristics (MATH) datasets, based on the error margin of 11%, the confidence level of 90%, and a manageable number of samples for the student evaluators. These samples were used to evaluate two capable LLMs at length (Generative Pretrained Transformer 4o (GPT4o) and Claude 3.5 Sonnet) out of the initial six that were tested for capability. The results showed that students agree in more instances that the MEGA method is experienced as better for learning for both datasets. It is even much better than the CoT (47.5% compared to 26.67%) in the more difficult MATH dataset, indicating that MEGA is better at explaining difficult Maths problems.
Abstract:Condition monitoring (CM) plays a crucial role in ensuring reliability and efficiency in the process industry. Although computerised maintenance systems effectively detect and classify faults, tasks like fault severity estimation, and maintenance decisions still largely depend on human expert analysis. The analysis and decision making automatically performed by current systems typically exhibit considerable uncertainty and high false alarm rates, leading to increased workload and reduced efficiency. This work integrates large language model (LLM)-based reasoning agents with CM workflows to address analyst and industry needs, namely reducing false alarms, enhancing fault severity estimation, improving decision support, and offering explainable interfaces. We propose MindRAG, a modular framework combining multimodal retrieval-augmented generation (RAG) with novel vector store structures designed specifically for CM data. The framework leverages existing annotations and maintenance work orders as surrogates for labels in a supervised learning protocol, addressing the common challenge of training predictive models on unlabelled and noisy real-world datasets. The primary contributions include: (1) an approach for structuring industry CM data into a semi-structured multimodal vector store compatible with LLM-driven workflows; (2) developing multimodal RAG techniques tailored for CM data; (3) developing practical reasoning agents capable of addressing real-world CM queries; and (4) presenting an experimental framework for integrating and evaluating such agents in realistic industrial scenarios. Preliminary results, evaluated with the help of an experienced analyst, indicate that MindRAG provide meaningful decision support for more efficient management of alarms, thereby improving the interpretability of CM systems.
Abstract:Authorship analysis plays an important role in diverse domains, including forensic linguistics, academia, cybersecurity, and digital content authentication. This paper presents a systematic literature review on two key sub-tasks of authorship analysis; Author Attribution and Author Verification. The review explores SOTA methodologies, ranging from traditional ML approaches to DL models and LLMs, highlighting their evolution, strengths, and limitations, based on studies conducted from 2015 to 2024. Key contributions include a comprehensive analysis of methods, techniques, their corresponding feature extraction techniques, datasets used, and emerging challenges in authorship analysis. The study highlights critical research gaps, particularly in low-resource language processing, multilingual adaptation, cross-domain generalization, and AI-generated text detection. This review aims to help researchers by giving an overview of the latest trends and challenges in authorship analysis. It also points out possible areas for future study. The goal is to support the development of better, more reliable, and accurate authorship analysis system in diverse textual domain.
Abstract:This paper presents meta-sparsity, a framework for learning model sparsity, basically learning the parameter that controls the degree of sparsity, that allows deep neural networks (DNNs) to inherently generate optimal sparse shared structures in multi-task learning (MTL) setting. This proposed approach enables the dynamic learning of sparsity patterns across a variety of tasks, unlike traditional sparsity methods that rely heavily on manual hyperparameter tuning. Inspired by Model Agnostic Meta-Learning (MAML), the emphasis is on learning shared and optimally sparse parameters in multi-task scenarios by implementing a penalty-based, channel-wise structured sparsity during the meta-training phase. This method improves the model's efficacy by removing unnecessary parameters and enhances its ability to handle both seen and previously unseen tasks. The effectiveness of meta-sparsity is rigorously evaluated by extensive experiments on two datasets, NYU-v2 and CelebAMask-HQ, covering a broad spectrum of tasks ranging from pixel-level to image-level predictions. The results show that the proposed approach performs well across many tasks, indicating its potential as a versatile tool for creating efficient and adaptable sparse neural networks. This work, therefore, presents an approach towards learning sparsity, contributing to the efforts in the field of sparse neural networks and suggesting new directions for research towards parsimonious models.
Abstract:Handwritten Text Generation (HTG) conditioned on text and style is a challenging task due to the variability of inter-user characteristics and the unlimited combinations of characters that form new words unseen during training. Diffusion Models have recently shown promising results in HTG but still remain under-explored. We present DiffusionPen (DiffPen), a 5-shot style handwritten text generation approach based on Latent Diffusion Models. By utilizing a hybrid style extractor that combines metric learning and classification, our approach manages to capture both textual and stylistic characteristics of seen and unseen words and styles, generating realistic handwritten samples. Moreover, we explore several variation strategies of the data with multi-style mixtures and noisy embeddings, enhancing the robustness and diversity of the generated data. Extensive experiments using IAM offline handwriting database show that our method outperforms existing methods qualitatively and quantitatively, and its additional generated data can improve the performance of Handwriting Text Recognition (HTR) systems. The code is available at: https://github.com/koninik/DiffusionPen.
Abstract:The evaluation of generative models for natural image tasks has been extensively studied. Similar protocols and metrics are used in cases with unique particularities, such as Handwriting Generation, even if they might not be completely appropriate. In this work, we introduce three measures tailored for HTG evaluation, $ \text{HTG}_{\text{HTR}} $, $ \text{HTG}_{\text{style}} $, and $ \text{HTG}_{\text{OOV}} $, and argue that they are more expedient to evaluate the quality of generated handwritten images. The metrics rely on the recognition error/accuracy of Handwriting Text Recognition and Writer Identification models and emphasize writing style, textual content, and diversity as the main aspects that adhere to the content of handwritten images. We conduct comprehensive experiments on the IAM handwriting database, showcasing that widely used metrics such as FID fail to properly quantify the diversity and the practical utility of generated handwriting samples. Our findings show that our metrics are richer in information and underscore the necessity of standardized evaluation protocols in HTG. The proposed metrics provide a more robust and informative protocol for assessing HTG quality, contributing to improved performance in HTR. Code for the evaluation protocol is available at: https://github.com/koninik/HTG_evaluation.
Abstract:Every task demands distinct feature representations, ranging from low-level to high-level attributes, so it is vital to address the specific needs of each task, especially in the Multi-task Learning (MTL) framework. This work, therefore, introduces Layer-Optimized Multi-Task (LOMT) models that utilize structured sparsity to refine feature selection for individual tasks and enhance the performance of all tasks in a multi-task scenario. Structured or group sparsity systematically eliminates parameters from trivial channels and, eventually, entire layers within a convolution neural network during training. Consequently, the remaining layers provide the most optimal features for a given task. In this two-step approach, we subsequently leverage this sparsity-induced optimal layer information to build the LOMT models by connecting task-specific decoders to these strategically identified layers, deviating from conventional approaches that uniformly connect decoders at the end of the network. This tailored architecture optimizes the network, focusing on essential features while reducing redundancy. We validate the efficacy of the proposed approach on two datasets, ie NYU-v2 and CelebAMask-HD datasets, for multiple heterogeneous tasks. A detailed performance analysis of the LOMT models, in contrast to the conventional MTL models, reveals that the LOMT models outperform for most task combinations. The excellent qualitative and quantitative outcomes highlight the effectiveness of employing structured sparsity for optimal layer (or feature) selection.
Abstract:Model sparsification in deep learning promotes simpler, more interpretable models with fewer parameters. This not only reduces the model's memory footprint and computational needs but also shortens inference time. This work focuses on creating sparse models optimized for multiple tasks with fewer parameters. These parsimonious models also possess the potential to match or outperform dense models in terms of performance. In this work, we introduce channel-wise l1/l2 group sparsity in the shared convolutional layers parameters (or weights) of the multi-task learning model. This approach facilitates the removal of extraneous groups i.e., channels (due to l1 regularization) and also imposes a penalty on the weights, further enhancing the learning efficiency for all tasks (due to l2 regularization). We analyzed the results of group sparsity in both single-task and multi-task settings on two widely-used Multi-Task Learning (MTL) datasets: NYU-v2 and CelebAMask-HQ. On both datasets, which consist of three different computer vision tasks each, multi-task models with approximately 70% sparsity outperform their dense equivalents. We also investigate how changing the degree of sparsification influences the model's performance, the overall sparsity percentage, the patterns of sparsity, and the inference time.
Abstract:Self-supervised learning in computer vision aims to leverage the inherent structure and relationships within data to learn meaningful representations without explicit human annotation, enabling a holistic understanding of visual scenes. Robustness in vision machine learning ensures reliable and consistent performance, enhancing generalization, adaptability, and resistance to noise, variations, and adversarial attacks. Self-supervised paradigms, namely contrastive learning, knowledge distillation, mutual information maximization, and clustering, have been considered to have shown advances in invariant learning representations. This work investigates the robustness of learned representations of self-supervised learning approaches focusing on distribution shifts and image corruptions in computer vision. Detailed experiments have been conducted to study the robustness of self-supervised learning methods on distribution shifts and image corruptions. The empirical analysis demonstrates a clear relationship between the performance of learned representations within self-supervised paradigms and the severity of distribution shifts and corruptions. Notably, higher levels of shifts and corruptions are found to significantly diminish the robustness of the learned representations. These findings highlight the critical impact of distribution shifts and image corruptions on the performance and resilience of self-supervised learning methods, emphasizing the need for effective strategies to mitigate their adverse effects. The study strongly advocates for future research in the field of self-supervised representation learning to prioritize the key aspects of safety and robustness in order to ensure practical applicability. The source code and results are available on GitHub.