Fairness has emerged as one of the key challenges in federated learning. In horizontal federated settings, data heterogeneity often leads to substantial performance disparities across clients, raising concerns about equitable model behavior. To address this issue, we propose FedGA, a fairness-aware federated learning algorithm. We first employ the Gini coefficient to measure the performance disparity among clients. Based on this, we establish a relationship between the Gini coefficient $G$ and the update scale of the global model ${U_s}$, and use this relationship to adaptively determine the timing of fairness intervention. Subsequently, we dynamically adjust the aggregation weights according to the system's real-time fairness status, enabling the global model to better incorporate information from clients with relatively poor performance.We conduct extensive experiments on the Office-Caltech-10, CIFAR-10, and Synthetic datasets. The results show that FedGA effectively improves fairness metrics such as variance and the Gini coefficient, while maintaining strong overall performance, demonstrating the effectiveness of our approach.




Electrification of vehicles is a potential way of reducing fossil fuel usage and thus lessening environmental pollution. Electric Vehicles (EVs) of various types for different transport modes (including air, water, and land) are evolving. Moreover, different EV user groups (commuters, commercial or domestic users, drivers) may use different charging infrastructures (public, private, home, and workplace) at various times. Therefore, usage patterns and energy demand are very stochastic. Characterizing and forecasting the charging demand of these diverse EV usage profiles is essential in preventing power outages. Previously developed data-driven load models are limited to specific use cases and locations. None of these models are simultaneously adaptive enough to transfer knowledge of day-ahead forecasting among EV charging sites of diverse locations, trained with limited data, and cost-effective. This article presents a location-based load forecasting of EV charging sites using a deep Multi-Quantile Temporal Convolutional Network (MQ-TCN) to overcome the limitations of earlier models. We conducted our experiments on data from four charging sites, namely Caltech, JPL, Office-1, and NREL, which have diverse EV user types like students, full-time and part-time employees, random visitors, etc. With a Prediction Interval Coverage Probability (PICP) score of 93.62\%, our proposed deep MQ-TCN model exhibited a remarkable 28.93\% improvement over the XGBoost model for a day-ahead load forecasting at the JPL charging site. By transferring knowledge with the inductive Transfer Learning (TL) approach, the MQ-TCN model achieved a 96.88\% PICP score for the load forecasting task at the NREL site using only two weeks of data.




Federated learning (FL) has emerged as a new paradigm for privacy-preserving collaborative training. Under domain skew, the current FL approaches are biased and face two fairness problems. 1) Parameter Update Conflict: data disparity among clients leads to varying parameter importance and inconsistent update directions. These two disparities cause important parameters to potentially be overwhelmed by unimportant ones of dominant updates. It consequently results in significant performance decreases for lower-performing clients. 2) Model Aggregation Bias: existing FL approaches introduce unfair weight allocation and neglect domain diversity. It leads to biased model convergence objective and distinct performance among domains. We discover a pronounced directional update consistency in Federated Learning and propose a novel framework to tackle above issues. First, leveraging the discovered characteristic, we selectively discard unimportant parameter updates to prevent updates from clients with lower performance overwhelmed by unimportant parameters, resulting in fairer generalization performance. Second, we propose a fair aggregation objective to prevent global model bias towards some domains, ensuring that the global model continuously aligns with an unbiased model. The proposed method is generic and can be combined with other existing FL methods to enhance fairness. Comprehensive experiments on Digits and Office-Caltech demonstrate the high fairness and performance of our method.




By using unsupervised domain adaptation (UDA), knowledge can be transferred from a label-rich source domain to a target domain that contains relevant information but lacks labels. Many existing UDA algorithms suffer from directly using raw images as input, resulting in models that overly focus on redundant information and exhibit poor generalization capability. To address this issue, we attempt to improve the performance of unsupervised domain adaptation by employing the Fourier method (FTF).Specifically, FTF is inspired by the amplitude of Fourier spectra, which primarily preserves low-level statistical information. In FTF, we effectively incorporate low-level information from the target domain into the source domain by fusing the amplitudes of both domains in the Fourier domain. Additionally, we observe that extracting features from batches of images can eliminate redundant information while retaining class-specific features relevant to the task. Building upon this observation, we apply the Fourier Transform at the data stream level for the first time. To further align multiple sources of data, we introduce the concept of correlation alignment. To evaluate the effectiveness of our FTF method, we conducted evaluations on four benchmark datasets for domain adaptation, including Office-31, Office-Home, ImageCLEF-DA, and Office-Caltech. Our results demonstrate superior performance.
The practical Domain Adaptation (DA) tasks, e.g., Partial DA (PDA), open-set DA, universal DA, and test-time adaptation, have gained increasing attention in the machine learning community. In this paper, we propose a novel approach, dubbed Adversarial Reweighting with $\alpha$-Power Maximization (ARPM), for PDA where the source domain contains private classes absent in target domain. In ARPM, we propose a novel adversarial reweighting model that adversarially learns to reweight source domain data to identify source-private class samples by assigning smaller weights to them, for mitigating potential negative transfer. Based on the adversarial reweighting, we train the transferable recognition model on the reweighted source distribution to be able to classify common class data. To reduce the prediction uncertainty of the recognition model on the target domain for PDA, we present an $\alpha$-power maximization mechanism in ARPM, which enriches the family of losses for reducing the prediction uncertainty for PDA. Extensive experimental results on five PDA benchmarks, i.e., Office-31, Office-Home, VisDA-2017, ImageNet-Caltech, and DomainNet, show that our method is superior to recent PDA methods. Ablation studies also confirm the effectiveness of components in our approach. To theoretically analyze our method, we deduce an upper bound of target domain expected error for PDA, which is approximately minimized in our approach. We further extend ARPM to open-set DA, universal DA, and test time adaptation, and verify the usefulness through experiments.
In this article, we propose an approach for federated domain adaptation, a setting where distributional shift exists among clients and some have unlabeled data. The proposed framework, FedDaDiL, tackles the resulting challenge through dictionary learning of empirical distributions. In our setting, clients' distributions represent particular domains, and FedDaDiL collectively trains a federated dictionary of empirical distributions. In particular, we build upon the Dataset Dictionary Learning framework by designing collaborative communication protocols and aggregation operations. The chosen protocols keep clients' data private, thus enhancing overall privacy compared to its centralized counterpart. We empirically demonstrate that our approach successfully generates labeled data on the target domain with extensive experiments on (i) Caltech-Office, (ii) TEP, and (iii) CWRU benchmarks. Furthermore, we compare our method to its centralized counterpart and other benchmarks in federated domain adaptation.
In this paper, we consider the intersection of two problems in machine learning: Multi-Source Domain Adaptation (MSDA) and Dataset Distillation (DD). On the one hand, the first considers adapting multiple heterogeneous labeled source domains to an unlabeled target domain. On the other hand, the second attacks the problem of synthesizing a small summary containing all the information about the datasets. We thus consider a new problem called MSDA-DD. To solve it, we adapt previous works in the MSDA literature, such as Wasserstein Barycenter Transport and Dataset Dictionary Learning, as well as DD method Distribution Matching. We thoroughly experiment with this novel problem on four benchmarks (Caltech-Office 10, Tennessee-Eastman Process, Continuous Stirred Tank Reactor, and Case Western Reserve University), where we show that, even with as little as 1 sample per class, one achieves state-of-the-art adaptation performance.




This paper seeks to solve Multi-Source Domain Adaptation (MSDA), which aims to mitigate data distribution shifts when transferring knowledge from multiple labeled source domains to an unlabeled target domain. We propose a novel MSDA framework based on dictionary learning and optimal transport. We interpret each domain in MSDA as an empirical distribution. As such, we express each domain as a Wasserstein barycenter of dictionary atoms, which are empirical distributions. We propose a novel algorithm, DaDiL, for learning via mini-batches: (i) atom distributions; (ii) a matrix of barycentric coordinates. Based on our dictionary, we propose two novel methods for MSDA: DaDil-R, based on the reconstruction of labeled samples in the target domain, and DaDiL-E, based on the ensembling of classifiers learned on atom distributions. We evaluate our methods in 3 benchmarks: Caltech-Office, Office 31, and CRWU, where we improved previous state-of-the-art by 3.15%, 2.29%, and 7.71% in classification performance. Finally, we show that interpolations in the Wasserstein hull of learned atoms provide data that can generalize to the target domain.
This work introduces the novel task of Source-free Multi-target Domain Adaptation and proposes adaptation framework comprising of \textbf{Co}nsistency with \textbf{N}uclear-Norm Maximization and \textbf{Mix}Up knowledge distillation (\textit{CoNMix}) as a solution to this problem. The main motive of this work is to solve for Single and Multi target Domain Adaptation (SMTDA) for the source-free paradigm, which enforces a constraint where the labeled source data is not available during target adaptation due to various privacy-related restrictions on data sharing. The source-free approach leverages target pseudo labels, which can be noisy, to improve the target adaptation. We introduce consistency between label preserving augmentations and utilize pseudo label refinement methods to reduce noisy pseudo labels. Further, we propose novel MixUp Knowledge Distillation (MKD) for better generalization on multiple target domains using various source-free STDA models. We also show that the Vision Transformer (VT) backbone gives better feature representation with improved domain transferability and class discriminability. Our proposed framework achieves the state-of-the-art (SOTA) results in various paradigms of source-free STDA and MTDA settings on popular domain adaptation datasets like Office-Home, Office-Caltech, and DomainNet. Project Page: https://sites.google.com/view/conmix-vcl




We tackle the novel problem of incremental unsupervised domain adaptation (IDA) in this paper. We assume that a labeled source domain and different unlabeled target domains are incrementally observed with the constraint that data corresponding to the current domain is only available at a time. The goal is to preserve the accuracies for all the past domains while generalizing well for the current domain. The IDA setup suffers due to the abrupt differences among the domains and the unavailability of past data including the source domain. Inspired by the notion of generative feature replay, we propose a novel framework called Feature Replay based Incremental Domain Adaptation (FRIDA) which leverages a new incremental generative adversarial network (GAN) called domain-generic auxiliary classification GAN (DGAC-GAN) for producing domain-specific feature representations seamlessly. For domain alignment, we propose a simple extension of the popular domain adversarial neural network (DANN) called DANN-IB which encourages discriminative domain-invariant and task-relevant feature learning. Experimental results on Office-Home, Office-CalTech, and DomainNet datasets confirm that FRIDA maintains superior stability-plasticity trade-off than the literature.