Supervised machine learning frameworks rely on extensive labeled datasets for robust performance on real-world tasks. However, there is a lack of large annotated datasets in audio and music domains, as annotating such recordings is resource-intensive, laborious, and often require expert domain knowledge. In this work, we explore the use of label propagation (LP), a graph-based semi-supervised learning technique, for automatically labeling the unlabeled set in an unsupervised manner. By constructing a similarity graph over audio embeddings, we propagate limited label information from a small annotated subset to a larger unlabeled corpus in a transductive, semi-supervised setting. We apply this method to two tasks in Indian Art Music (IAM): Raga identification and Instrument classification. For both these tasks, we integrate multiple public datasets along with additional recordings we acquire from Prasar Bharati Archives to perform LP. Our experiments demonstrate that LP significantly reduces labeling overhead and produces higher-quality annotations compared to conventional baseline methods, including those based on pretrained inductive models. These results highlight the potential of graph-based semi-supervised learning to democratize data annotation and accelerate progress in music information retrieval.
This paper investigates node deployment strategies for robust multi-node cooperative localization in integrated sensing and communication (ISAC) networks.We first analyze how steering vector correlation across different positions affects localization performance and introduce a novel distance-weighted correlation metric to characterize this effect. Building upon this insight, we propose a deployment optimization framework that minimizes the maximum weighted steering vector correlation by optimizing simultaneously node positions and array orientations, thereby enhancing worst-case network robustness. Then, a genetic algorithm (GA) is developed to solve this min-max optimization, yielding optimized node positions and array orientations. Extensive simulations using both multiple signal classification (MUSIC) and neural-network (NN)-based localization validate the effectiveness of the proposed methods, demonstrating significant improvements in robust localization performance.




Video-based respiratory rate (RR) estimation is often unreliable due to inconsistent signal quality across extraction methods. We present a predictive, quality-aware framework that integrates heterogeneous signal sources with dynamic assessment of reliability. Ten signals are extracted from facial remote photoplethysmography (rPPG), upper-body motion, and deep learning pipelines, and analyzed using four spectral estimators: Welch's method, Multiple Signal Classification (MUSIC), Fast Fourier Transform (FFT), and peak detection. Segment-level quality indices are then used to train machine learning models that predict accuracy or select the most reliable signal. This enables adaptive signal fusion and quality-based segment filtering. Experiments on three public datasets (OMuSense-23, COHFACE, MAHNOB-HCI) show that the proposed framework achieves lower RR estimation errors than individual methods in most cases, with performance gains depending on dataset characteristics. These findings highlight the potential of quality-driven predictive modeling to deliver scalable and generalizable video-based respiratory monitoring solutions.
Music improvisation is fascinating to study, being essentially a live demonstration of a creative process. In jazz, musicians often improvise across predefined chord progressions (leadsheets). How do we assess the creativity of jazz improvisations? And can we capture this in automated metrics for creativity for current LLM-based generative systems? Demonstration of emotional involvement is closely linked with creativity in improvisation. Analysing musical audio, can we detect emotional involvement? This study hypothesises that if an improvisation contains more evidence of emotion-laden content, it is more likely to be recognised as creative. An embeddings-based method is proposed for capturing the emotional content in musical improvisations, using a psychologically-grounded classification of musical characteristics associated with emotions. Resulting 'emovectors' are analysed to test the above hypothesis, comparing across multiple improvisations. Capturing emotional content in this quantifiable way can contribute towards new metrics for creativity evaluation that can be applied at scale.
In the era of rapid development of artificial intelligence, its applications span across diverse fields, relying heavily on effective data processing and model optimization. Combined Regularized Support Vector Machines (CR-SVMs) can effectively handle the structural information among data features, but there is a lack of efficient algorithms in distributed-stored big data. To address this issue, we propose a unified optimization framework based on consensus structure. This framework is not only applicable to various loss functions and combined regularization terms but can also be effectively extended to non-convex regularization terms, showing strong scalability. Based on this framework, we develop a distributed parallel alternating direction method of multipliers (ADMM) algorithm to efficiently compute CR-SVMs when data is stored in a distributed manner. To ensure the convergence of the algorithm, we also introduce the Gaussian back-substitution method. Meanwhile, for the integrity of the paper, we introduce a new model, the sparse group lasso support vector machine (SGL-SVM), and apply it to music information retrieval. Theoretical analysis confirms that the computational complexity of the proposed algorithm is not affected by different regularization terms and loss functions, highlighting the universality of the parallel algorithm. Experiments on synthetic and free music archiv datasets demonstrate the reliability, stability, and efficiency of the algorithm.
Language identification is a crucial first step in multilingual systems such as chatbots and virtual assistants, enabling linguistically and culturally accurate user experiences. Errors at this stage can cascade into downstream failures, setting a high bar for accuracy. Yet, existing language identification tools struggle with key cases -- such as music requests where the song title and user language differ. Open-source tools like LangDetect, FastText are fast but less accurate, while large language models, though effective, are often too costly for low-latency or low-resource settings. We introduce PolyLingua, a lightweight Transformer-based model for in-domain language detection and fine-grained language classification. It employs a two-level contrastive learning framework combining instance-level separation and class-level alignment with adaptive margins, yielding compact and well-separated embeddings even for closely related languages. Evaluated on two challenging datasets -- Amazon Massive (multilingual digital assistant utterances) and a Song dataset (music requests with frequent code-switching) -- PolyLingua achieves 99.25% F1 and 98.15% F1, respectively, surpassing Sonnet 3.5 while using 10x fewer parameters, making it ideal for compute- and latency-constrained environments.
Musical instrument classification is essential for music information retrieval (MIR) and generative music systems. However, research on non-Western traditions, particularly Persian music, remains limited. We address this gap by introducing a new dataset of isolated recordings covering seven traditional Persian instruments, two common but originally non-Persian instruments (i.e., violin, piano), and vocals. We propose a culturally informed data augmentation strategy that generates realistic polyphonic mixtures from monophonic samples. Using the MERT model (Music undERstanding with large-scale self-supervised Training) with a classification head, we evaluate our approach with out-of-distribution data which was obtained by manually labeling segments of traditional songs. On real-world polyphonic Persian music, the proposed method yielded the best ROC-AUC (0.795), highlighting complementary benefits of tonal and temporal coherence. These results demonstrate the effectiveness of culturally grounded augmentation for robust Persian instrument recognition and provide a foundation for culturally inclusive MIR and diverse music generation systems.
This work studies an integrated sensing and communication (ISAC) framework for targets that are spread both in the angle and range domains. We model each target using a cluster of rays parameterized by a specific density function, and propose a truncated Multiple Signal Classification (MUSIC) spread (TMS) algorithm to accurately estimate the parameters of the density function. Unlike the conventional MUSIC spread (CMS), TMS restricts the signal subspace rank based on the eigen decomposition of the received-signal autocorrelation. We also propose a discrete Fourier transform (DFT) based algorithm for estimating the distance and range spread of each target. Leveraging these estimates, we then develop a dynamic transmit beamforming algorithm that successfully illuminates multiple targets while also serving multiple downlink (DL) users. Simulation results demonstrate the superiority of our proposed algorithms over baseline schemes in both low and high signal-to-noise ratio (SNR) regimes as well as under a wide angular spread regime.
Interpretability is essential for deploying deep learning models in symbolic music analysis, yet most research emphasizes model performance over explanation. To address this, we introduce MUSE-Explainer, a new method that helps reveal how music Graph Neural Network models make decisions by providing clear, human-friendly explanations. Our approach generates counterfactual explanations by making small, meaningful changes to musical score graphs that alter a model's prediction while ensuring the results remain musically coherent. Unlike existing methods, MUSE-Explainer tailors its explanations to the structure of musical data and avoids unrealistic or confusing outputs. We evaluate our method on a music analysis task and show it offers intuitive insights that can be visualized with standard music tools such as Verovio.




Text-to-audio models are a type of generative model that produces audio output in response to a given textual prompt. Although level generators and the properties of the functional content that they create (e.g., playability) dominate most discourse in procedurally generated content (PCG), games that emotionally resonate with players tend to weave together a range of creative and multimodal content (e.g., music, sounds, visuals, narrative tone), and multimodal models have begun seeing at least experimental use for this purpose. However, it remains unclear what exactly such models generate, and with what degree of variability and fidelity: audio is an extremely broad class of output for a generative system to target. Within the PCG community, expressive range analysis (ERA) has been used as a quantitative way to characterize generators' output space, especially for level generators. This paper adapts ERA to text-to-audio models, making the analysis tractable by looking at the expressive range of outputs for specific, fixed prompts. Experiments are conducted by prompting the models with several standardized prompts derived from the Environmental Sound Classification (ESC-50) dataset. The resulting audio is analyzed along key acoustic dimensions (e.g., pitch, loudness, and timbre). More broadly, this paper offers a framework for ERA-based exploratory evaluation of generative audio models.