Abstract:Bangla music is enrich in its own music cultures. Now a days music genre classification is very significant because of the exponential increase in available music, both in digital and physical formats. It is necessary to index them accordingly to facilitate improved retrieval. Automatically classifying Bangla music by genre is essential for efficiently locating specific pieces within a vast and diverse music library. Prevailing methods for genre classification predominantly employ conventional machine learning or deep learning approaches. This work introduces a novel music dataset comprising ten distinct genres of Bangla music. For the task of audio classification, we utilize a recurrent neural network (RNN) architecture. Specifically, a Long Short-Term Memory (LSTM) network is implemented to train the model and perform the classification. Feature extraction represents a foundational stage in audio data processing. This study utilizes Mel-Frequency Cepstral Coefficients (MFCCs) to transform raw audio waveforms into a compact and representative set of features. The proposed framework facilitates music genre classification by leveraging these extracted features. Experimental results demonstrate a classification accuracy of 78%, indicating the system's strong potential to enhance and streamline the organization of Bangla music genres.
Abstract:Polycystic Ovary Syndrome (PCOS) is the most familiar endocrine illness in women of reproductive age. Many Bangladeshi women suffer from PCOS disease in their older age. The aim of our research is to identify effective vision-based medical image analysis techniques and evaluate hybrid models for the accurate detection of PCOS. We introduced two novel hybrid models combining convolutional and transformer-based approaches. The training and testing data were organized into two categories: "infected" (PCOS-positive) and "noninfected" (healthy ovaries). In the initial stage, our first hybrid model, 'DenConST' (integrating DenseNet121, Swin Transformer, and ConvNeXt), achieved 85.69% accuracy. The final optimized model, 'DenConREST' (incorporating Swin Transformer, ConvNeXt, DenseNet121, ResNet18, and EfficientNetV2), demonstrated superior performance with 98.23% accuracy. Among all evaluated models, DenConREST showed the best performance. This research highlights an efficient solution for PCOS detection from ultrasound images, significantly improving diagnostic accuracy while reducing detection errors.