What is Humor Detection? Humor detection is the process of identifying and categorizing humorous content in text data.
Papers and Code
May 24, 2025
Abstract:Aiming towards improving current computational models of humor detection, we propose a new multimodal dataset of stand-up comedies, in seven languages: English, French, Spanish, Italian, Portuguese, Hungarian and Czech. Our dataset of more than 330 hours, is at the time of writing the biggest available for this type of task, and the most diverse. The whole dataset is automatically annotated in laughter (from the audience), and the subpart left for model validation is manually annotated. Contrary to contemporary approaches, we do not frame the task of humor detection as a binary sequence classification, but as word-level sequence labeling, in order to take into account all the context of the sequence and to capture the continuous joke tagging mechanism typically occurring in natural conversations. As par with unimodal baselines results, we propose a method for e propose a method to enhance the automatic laughter detection based on Audio Speech Recognition errors. Our code and data are available online: https://tinyurl.com/EMNLPHumourStandUpPublic
Via

May 28, 2025
Abstract:Emotion understanding includes basic tasks (e.g., sentiment/emotion classification) and advanced tasks (e.g., sarcasm/humor detection). Current methods rely on fixed-length CoT reasoning, failing to adapt to the varying complexity of emotions. We propose a task-adaptive reasoning framework that employs DeepSeek-R1 to generate variable-length reasoning chains for different emotion tasks. By combining fine-tuning with reinforcement learning, we design a composite reward function that balances four objectives: prediction accuracy, adaptive reasoning depth control, structural diversity in reasoning paths, and suppression of repetitive logic. This approach achieves dynamic context-sensitive inference while enabling LLMs to autonomously develop deep reasoning capabilities. Experimental results demonstrate consistent improvements in both Acc and F1 scores across four tasks: emotion, sentiment, humor, and sarcasm. Notably, peak enhancements reached 3.56% F1 (2.76% Acc) for basic tasks and 37.95% F1 (23.14% Acc) for advanced tasks. Our work bridges rigid CoT reasoning and emotional complexity through adaptive-depth analysis.
Via

Apr 29, 2025
Abstract:Memes often merge visuals with brief text to share humor or opinions, yet some memes contain harmful messages such as hate speech. In this paper, we introduces MemeBLIP2, a light weight multimodal system that detects harmful memes by combining image and text features effectively. We build on previous studies by adding modules that align image and text representations into a shared space and fuse them for better classification. Using BLIP-2 as the core vision-language model, our system is evaluated on the PrideMM datasets. The results show that MemeBLIP2 can capture subtle cues in both modalities, even in cases with ironic or culturally specific content, thereby improving the detection of harmful material.
* 11pages,2 figures, manucripts in preparation
Via

Apr 30, 2025
Abstract:The rapid evolution of social media has provided enhanced communication channels for individuals to create online content, enabling them to express their thoughts and opinions. Multimodal memes, often utilized for playful or humorous expressions with visual and textual elements, are sometimes misused to disseminate hate speech against individuals or groups. While the detection of hateful memes is well-researched, developing effective methods to transform hateful content in memes remains a significant challenge. Leveraging the powerful generation and reasoning capabilities of Vision-Language Models (VLMs), we address the tasks of detecting and mitigating hateful content. This paper presents two key contributions: first, a definition-guided prompting technique for detecting hateful memes, and second, a unified framework for mitigating hateful content in memes, named UnHateMeme, which works by replacing hateful textual and/or visual components. With our definition-guided prompts, VLMs achieve impressive performance on hateful memes detection task. Furthermore, our UnHateMeme framework, integrated with VLMs, demonstrates a strong capability to convert hateful memes into non-hateful forms that meet human-level criteria for hate speech and maintain multimodal coherence between image and text. Through empirical experiments, we show the effectiveness of state-of-the-art pretrained VLMs such as LLaVA, Gemini and GPT-4o on the proposed tasks, providing a comprehensive analysis of their respective strengths and limitations for these tasks. This paper aims to shed light on important applications of VLMs for ensuring safe and respectful online environments.
Via

Apr 23, 2025
Abstract:Memes are widely used for humor and cultural commentary, but they are increasingly exploited to spread hateful content. Due to their multimodal nature, hateful memes often evade traditional text-only or image-only detection systems, particularly when they employ subtle or coded references. To address these challenges, we propose a multimodal hate detection framework that integrates key components: OCR to extract embedded text, captioning to describe visual content neutrally, sub-label classification for granular categorization of hateful content, RAG for contextually relevant retrieval, and VQA for iterative analysis of symbolic and contextual cues. This enables the framework to uncover latent signals that simpler pipelines fail to detect. Experimental results on the Facebook Hateful Memes dataset reveal that the proposed framework exceeds the performance of unimodal and conventional multimodal models in both accuracy and AUC-ROC.
* 13 pages, 2 figures, 2025 International Conference on Computational
Science
Via

Apr 12, 2025
Abstract:Comedy serves as a profound reflection of the times we live in and is a staple element of human interactions. In light of the widespread adoption of Large Language Models (LLMs), the intersection of humor and AI has become no laughing matter. Advancements in the naturalness of human-computer interaction correlates with improvements in AI systems' abilities to understand humor. In this study, we assess the ability of models in accurately identifying humorous quotes from a stand-up comedy transcript. Stand-up comedy's unique comedic narratives make it an ideal dataset to improve the overall naturalness of comedic understanding. We propose a novel humor detection metric designed to evaluate LLMs amongst various prompts on their capability to extract humorous punchlines. The metric has a modular structure that offers three different scoring methods - fuzzy string matching, sentence embedding, and subspace similarity - to provide an overarching assessment of a model's performance. The model's results are compared against those of human evaluators on the same task. Our metric reveals that regardless of prompt engineering, leading models, ChatGPT, Claude, and DeepSeek, achieve scores of at most 51% in humor detection. Notably, this performance surpasses that of humans who achieve a score of 41%. The analysis of human evaluators and LLMs reveals variability in agreement, highlighting the subjectivity inherent in humor and the complexities involved in extracting humorous quotes from live performance transcripts. Code available at https://github.com/swaggirl9000/humor.
* Accepted to CMCL2025 @ NAACL
Via

Apr 14, 2025
Abstract:Memes have become a dominant form of communication in social media in recent years. Memes are typically humorous and harmless, however there are also memes that promote hate speech, being in this way harmful to individuals and groups based on their identity. Therefore, detecting hateful content in memes has emerged as a task of critical importance. The need for understanding the complex interactions of images and their embedded text renders the hateful meme detection a challenging multimodal task. In this paper we propose to address the aforementioned task leveraging knowledge encoded in powerful Large Multimodal Models (LMM). Specifically, we propose to exploit LMMs in a two-fold manner. First, by extracting knowledge oriented to the hateful meme detection task in order to build strong meme representations. Specifically, generic semantic descriptions and emotions that the images along with their embedded texts elicit are extracted, which are then used to train a simple classification head for hateful meme detection. Second, by developing a novel hard mining approach introducing directly LMM-encoded knowledge to the training process, providing further improvements. We perform extensive experiments on two datasets that validate the effectiveness of the proposed method, achieving state-of-the-art performance. Our code and trained models are publicly available at: https://github.com/IDT-ITI/LMM-CLIP-meme.
* Accepted for publication, Multimodal Learning and Applications
Workshop (MULA 2025) @ IEEE/CVF CVPR 2025, Nashville, TN, USA, June 2025.
This is the authors' "accepted version"
Via

Apr 10, 2025
Abstract:The headline is an important part of a news article, influenced by expressiveness and connection to the exposed subject. Although most news outlets aim to present reality objectively, some publications prefer a humorous approach in which stylistic elements of satire, irony, and sarcasm blend to cover specific topics. Satire detection can be difficult because a headline aims to expose the main idea behind a news article. In this paper, we propose SaRoHead, the first corpus for satire detection in Romanian multi-domain news headlines. Our findings show that the clickbait used in some non-satirical headlines significantly influences the model.
* 5 pages, 1 figure
Via

Mar 20, 2025
Abstract:This paper presents the Deceptive Humor Dataset (DHD), a novel resource for studying humor derived from fabricated claims and misinformation. In an era of rampant misinformation, understanding how humor intertwines with deception is essential. DHD consists of humor-infused comments generated from false narratives, incorporating fabricated claims and manipulated information using the ChatGPT-4o model. Each instance is labeled with a Satire Level, ranging from 1 for subtle satire to 3 for high-level satire and classified into five distinct Humor Categories: Dark Humor, Irony, Social Commentary, Wordplay, and Absurdity. The dataset spans multiple languages including English, Telugu, Hindi, Kannada, Tamil, and their code-mixed variants (Te-En, Hi-En, Ka-En, Ta-En), making it a valuable multilingual benchmark. By introducing DHD, we establish a structured foundation for analyzing humor in deceptive contexts, paving the way for a new research direction that explores how humor not only interacts with misinformation but also influences its perception and spread. We establish strong baselines for the proposed dataset, providing a foundation for future research to benchmark and advance deceptive humor detection models.
* 15 Pages, 4 figures, 8 tables
Via

Mar 03, 2025
Abstract:We present KoWit-24, a dataset with fine-grained annotation of wordplay in 2,700 Russian news headlines. KoWit-24 annotations include the presence of wordplay, its type, wordplay anchors, and words/phrases the wordplay refers to. Unlike the majority of existing humor collections of canned jokes, KoWit-24 provides wordplay contexts -- each headline is accompanied by the news lead and summary. The most common type of wordplay in the dataset is the transformation of collocations, idioms, and named entities -- the mechanism that has been underrepresented in previous humor datasets. Our experiments with five LLMs show that there is ample room for improvement in wordplay detection and interpretation tasks. The dataset and evaluation scripts are available at https://github.com/Humor-Research/KoWit-24
Via
