The rapid expansion of online shopping has increased the demand for timely parcel delivery, compelling logistics service providers to enhance the efficiency, agility, and predictability of their hub networks. In order to solve the problem, we propose a novel deep learning-based ensemble framework that leverages historical arrival patterns and real-time parcel status updates to forecast upcoming workloads at logistic hubs. This approach not only facilitates the generation of short-term forecasts, but also improves the accuracy of future hub workload predictions for more strategic planning and resource management. Empirical tests of the algorithm, conducted through a case study of a major city's parcel logistics, demonstrate the ensemble method's superiority over both traditional forecasting techniques and standalone deep learning models. Our findings highlight the significant potential of this method to improve operational efficiency in logistics hubs and advocate for its broader adoption.
Integrating logical knowledge into deep neural network training is still a hard challenge, especially for sequential or temporally extended domains involving subsymbolic observations. To address this problem, we propose DeepDFA, a neurosymbolic framework that integrates high-level temporal logic - expressed as Deterministic Finite Automata (DFA) or Moore Machines - into neural architectures. DeepDFA models temporal rules as continuous, differentiable layers, enabling symbolic knowledge injection into subsymbolic domains. We demonstrate how DeepDFA can be used in two key settings: (i) static image sequence classification, and (ii) policy learning in interactive non-Markovian environments. Across extensive experiments, DeepDFA outperforms traditional deep learning models (e.g., LSTMs, GRUs, Transformers) and novel neuro-symbolic systems, achieving state-of-the-art results in temporal knowledge integration. These results highlight the potential of DeepDFA to bridge subsymbolic learning and symbolic reasoning in sequential tasks.
How do neural networks trained over sequences acquire the ability to perform structured operations, such as arithmetic, geometric, and algorithmic computation? To gain insight into this question, we introduce the sequential group composition task. In this task, networks receive a sequence of elements from a finite group encoded in a real vector space and must predict their cumulative product. The task can be order-sensitive and requires a nonlinear architecture to be learned. Our analysis isolates the roles of the group structure, encoding statistics, and sequence length in shaping learning. We prove that two-layer networks learn this task one irreducible representation of the group at a time in an order determined by the Fourier statistics of the encoding. These networks can perfectly learn the task, but doing so requires a hidden width exponential in the sequence length $k$. In contrast, we show how deeper models exploit the associativity of the task to dramatically improve this scaling: recurrent neural networks compose elements sequentially in $k$ steps, while multilayer networks compose adjacent pairs in parallel in $\log k$ layers. Overall, the sequential group composition task offers a tractable window into the mechanics of deep learning.
The evolution of biological morphology is critical for understanding the diversity of the natural world, yet traditional analyses often involve subjective biases in the selection and coding of morphological traits. This study employs deep learning techniques, utilising a ResNet34 model capable of recognising over 10,000 bird species, to explore avian morphological evolution. We extract weights from the model's final fully connected (fc) layer and investigate the semantic alignment between the high-dimensional embedding space learned by the model and biological phenotypes. The results demonstrate that the high-dimensional embedding space encodes phenotypic convergence. Subsequently, we assess the morphological disparity among various taxa and evaluate the association between morphological disparity and species richness, demonstrating that species richness is the primary driver of morphospace expansion. Moreover, the disparity-through-time analysis reveals a visual "early burst" after the K-Pg extinction. While mainly aimed at evolutionary analysis, this study also provides insights into the interpretability of Deep Neural Networks. We demonstrate that hierarchical semantic structures (biological taxonomy) emerged in the high-dimensional embedding space despite being trained on flat labels. Furthermore, through adversarial examples, we provide evidence that our model in this task can overcome texture bias and learn holistic shape representations (body plans), challenging the prevailing view that CNNs rely primarily on local textures.
Manual endoscopic submucosal dissection (ESD) is technically demanding, and existing single-segment robotic tools offer limited dexterity. These limitations motivate the development of more advanced solutions. To address this, DESectBot, a novel dual segment continuum robot with a decoupled structure and integrated surgical forceps, enabling 6 degrees of freedom (DoFs) tip dexterity for improved lesion targeting in ESD, was developed in this work. Deep learning controllers based on gated recurrent units (GRUs) for simultaneous tip position and orientation control, effectively handling the nonlinear coupling between continuum segments, were proposed. The GRU controller was benchmarked against Jacobian based inverse kinematics, model predictive control (MPC), a feedforward neural network (FNN), and a long short-term memory (LSTM) network. In nested-rectangle and Lissajous trajectory tracking tasks, the GRU achieved the lowest position/orientation RMSEs: 1.11 mm/ 4.62° and 0.81 mm/ 2.59°, respectively. For orientation control at a fixed position (four target poses), the GRU attained a mean RMSE of 0.14 mm and 0.72°, outperforming all alternatives. In a peg transfer task, the GRU achieved a 100% success rate (120 success/120 attempts) with an average transfer time of 11.8s, the STD significantly outperforms novice-controlled systems. Additionally, an ex vivo ESD demonstration grasping, elevating, and resecting tissue as the scalpel completed the cut confirmed that DESectBot provides sufficient stiffness to divide thick gastric mucosa and an operative workspace adequate for large lesions.These results confirm that GRU-based control significantly enhances precision, reliability, and usability in ESD surgical training scenarios.
Deep Research (DR) agents extend Large Language Models (LLMs) beyond parametric knowledge by autonomously retrieving and synthesizing evidence from large web corpora into long-form reports, enabling a long-horizon agentic paradigm. However, unlike real-time conversational assistants, DR is computationally expensive and time-consuming, creating an autonomy-interaction dilemma: high autonomy on ambiguous user queries often leads to prolonged execution with unsatisfactory outcomes. To address this, we propose IntentRL, a framework that trains proactive agents to clarify latent user intents before starting long-horizon research. To overcome the scarcity of open-ended research data, we introduce a scalable pipeline that expands a few seed samples into high-quality dialogue turns via a shallow-to-deep intent refinement graph. We further adopt a two-stage reinforcement learning (RL) strategy: Stage I applies RL on offline dialogues to efficiently learn general user-interaction behavior, while Stage II uses the trained agent and a user simulator for online rollouts to strengthen adaptation to diverse user feedback. Extensive experiments show that IntentRL significantly improves both intent hit rate and downstream task performance, outperforming the built-in clarify modules of closed-source DR agents and proactive LLM baselines.
Integrating hard constraints into deep learning is essential for safety-critical systems. Yet existing constructive layers that project predictions onto constraint boundaries face a fundamental bottleneck: gradient saturation. By collapsing exterior points onto lower-dimensional surfaces, standard orthogonal projections induce rank-deficient Jacobians, which nullify gradients orthogonal to active constraints and hinder optimization. We introduce Soft-Radial Projection, a differentiable reparameterization layer that circumvents this issue through a radial mapping from Euclidean space into the interior of the feasible set. This construction guarantees strict feasibility while preserving a full-rank Jacobian almost everywhere, thereby preventing the optimization stalls typical of boundary-based methods. We theoretically prove that the architecture retains the universal approximation property and empirically show improved convergence behavior and solution quality over state-of-the-art optimization- and projection-based baselines.
Coordinating traffic signals along multimodal corridors is challenging because many multi-agent deep reinforcement learning (DRL) approaches remain vehicle-centric and struggle with high-dimensional discrete action spaces. We propose MA2B-DDQN, a human-centric multi-agent action-branching double Deep Q-Network (DQN) framework that explicitly optimizes traveler-level equity. Our key contribution is an action-branching discrete control formulation that decomposes corridor control into (i) local, per-intersection actions that allocate green time between the next two phases and (ii) a single global action that selects the total duration of those phases. This decomposition enables scalable coordination under discrete control while reducing the effective complexity of joint decision-making. We also design a human-centric reward that penalizes the number of delayed individuals in the corridor, accounting for pedestrians, vehicle occupants, and transit passengers. Extensive evaluations across seven realistic traffic scenarios in Melbourne, Australia, demonstrate that our approach significantly reduces the number of impacted travelers, outperforming existing DRL and baseline methods. Experiments confirm the robustness of our model, showing minimal variance across diverse settings. This framework not only advocates for a fairer traffic signal system but also provides a scalable solution adaptable to varied urban traffic conditions.
Wave velocity is a key parameter for imaging complex media, but in vivo measurements are typically limited to reflection geometries, where only backscattered waves from short-scale heterogeneities are accessible. As a result, conventional reflection imaging fails to recover large-scale variations of the wave velocity landscape. Here we show that matrix imaging overcomes this limitation by exploiting the quality of wave focusing as an intrinsic guide star. We model wave propagation as a trainable multi-layer network that leverages optimization and deep learning tools to infer the wave velocity distribution. We validate this approach through ultrasound experiments on tissue-mimicking phantoms and human breast tissues, demonstrating its potential for tumour detection and characterization. Our method is broadly applicable to any kind of waves and media for which a reflection matrix can be measured.
While deep learning has revolutionized financial forecasting through sophisticated architectures, the design of the supervision signal itself is rarely scrutinized. We challenge the canonical assumption that training labels must strictly mirror inference targets, uncovering the Label Horizon Paradox: the optimal supervision signal often deviates from the prediction goal, shifting across intermediate horizons governed by market dynamics. We theoretically ground this phenomenon in a dynamic signal-noise trade-off, demonstrating that generalization hinges on the competition between marginal signal realization and noise accumulation. To operationalize this insight, we propose a bi-level optimization framework that autonomously identifies the optimal proxy label within a single training run. Extensive experiments on large-scale financial datasets demonstrate consistent improvements over conventional baselines, thereby opening new avenues for label-centric research in financial forecasting.