Large language model (LLM)-based multi-agent systems (MAS) show strong promise for complex reasoning, planning, and tool-augmented tasks, but designing effective MAS architectures remains labor-intensive, brittle, and hard to generalize. Existing automatic MAS generation methods either rely on code generation, which often leads to executability and robustness failures, or impose rigid architectural templates that limit expressiveness and adaptability. We propose Evolutionary Generation of Multi-Agent Systems (EvoMAS), which formulates MAS generation as structured configuration generation. EvoMAS performs evolutionary generation in configuration space. Specifically, EvoMAS selects initial configurations from a pool, applies feedback-conditioned mutation and crossover guided by execution traces, and iteratively refines both the candidate pool and an experience memory. We evaluate EvoMAS on diverse benchmarks, including BBEH, SWE-Bench, and WorkBench, covering reasoning, software engineering, and tool-use tasks. EvoMAS consistently improves task performance over both human-designed MAS and prior automatic MAS generation methods, while producing generated systems with higher executability and runtime robustness. EvoMAS outperforms the agent evolution method EvoAgent by +10.5 points on BBEH reasoning and +7.1 points on WorkBench. With Claude-4.5-Sonnet, EvoMAS also reaches 79.1% on SWE-Bench-Verified, matching the top of the leaderboard.