Abstract:Graph-based multi-task learning at billion-scale presents a significant challenge, as different tasks correspond to distinct billion-scale graphs. Traditional multi-task learning methods often neglect these graph structures, relying solely on individual user and item embeddings. However, disregarding graph structures overlooks substantial potential for improving performance. In this paper, we introduce the Macro Graph of Expert (MGOE) framework, the first approach capable of leveraging macro graph embeddings to capture task-specific macro features while modeling the correlations between task-specific experts. Specifically, we propose the concept of a Macro Graph Bottom, which, for the first time, enables multi-task learning models to incorporate graph information effectively. We design the Macro Prediction Tower to dynamically integrate macro knowledge across tasks. MGOE has been deployed at scale, powering multi-task learning for the homepage of a leading billion-scale recommender system. Extensive offline experiments conducted on three public benchmark datasets demonstrate its superiority over state-of-the-art multi-task learning methods, establishing MGOE as a breakthrough in multi-task graph-based recommendation. Furthermore, online A/B tests confirm the superiority of MGOE in billion-scale recommender systems.
Abstract:Transferability of adversarial examples is of critical importance to launch black-box adversarial attacks, where attackers are only allowed to access the output of the target model. However, under such a challenging but practical setting, the crafted adversarial examples are always prone to overfitting to the proxy model employed, presenting poor transferability. In this paper, we suggest alleviating the overfitting issue from a novel perspective, i.e., designing a fitted model architecture. Specifically, delving the bottom of the cause of poor transferability, we arguably decompose and reconstruct the existing model architecture into an effective model architecture, namely multi-track model architecture (MMA). The adversarial examples crafted on the MMA can maximumly relieve the effect of model-specified features to it and toward the vulnerable directions adopted by diverse architectures. Extensive experimental evaluation demonstrates that the transferability of adversarial examples based on the MMA significantly surpass other state-of-the-art model architectures by up to 40% with comparable overhead.