Abstract:Graph-based multi-task learning at billion-scale presents a significant challenge, as different tasks correspond to distinct billion-scale graphs. Traditional multi-task learning methods often neglect these graph structures, relying solely on individual user and item embeddings. However, disregarding graph structures overlooks substantial potential for improving performance. In this paper, we introduce the Macro Graph of Expert (MGOE) framework, the first approach capable of leveraging macro graph embeddings to capture task-specific macro features while modeling the correlations between task-specific experts. Specifically, we propose the concept of a Macro Graph Bottom, which, for the first time, enables multi-task learning models to incorporate graph information effectively. We design the Macro Prediction Tower to dynamically integrate macro knowledge across tasks. MGOE has been deployed at scale, powering multi-task learning for the homepage of a leading billion-scale recommender system. Extensive offline experiments conducted on three public benchmark datasets demonstrate its superiority over state-of-the-art multi-task learning methods, establishing MGOE as a breakthrough in multi-task graph-based recommendation. Furthermore, online A/B tests confirm the superiority of MGOE in billion-scale recommender systems.
Abstract:With the rise of contrastive learning, unsupervised graph representation learning has been booming recently, even surpassing the supervised counterparts in some machine learning tasks. Most of existing contrastive models for graph representation learning either focus on maximizing mutual information between local and global embeddings, or primarily depend on contrasting embeddings at node level. However, they are still not exquisite enough to comprehensively explore the local and global views of network topology. Although the former considers local-global relationship, its coarse global information leads to grudging cooperation between local and global views. The latter pays attention to node-level feature alignment, so that the role of global view appears inconspicuous. To avoid falling into these two extreme cases, we propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA. It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning. This not only facilitates the contrastive effect, but also provides the more high-quality graph information. Meanwhile, GRCCA further excavates cluster-level information, which make it get insight to the elusive association between nodes beyond graph topology. Specifically, we first generate two augmented graphs with distinct graph augmentation strategies, then employ clustering algorithms to obtain their cluster assignments and prototypes respectively. The proposed GRCCA further compels the identical nodes from different augmented graphs to recognize their cluster assignments mutually by minimizing a cross entropy loss. To demonstrate its effectiveness, we compare with the state-of-the-art models in three different downstream tasks. The experimental results show that GRCCA has strong competitiveness in most tasks.