Abstract:This study addresses the challenge of accurately identifying multi-task contention types in high-dimensional system environments and proposes a unified contention classification framework that integrates representation transformation, structural modeling, and a task decoupling mechanism. The method first constructs system state representations from high-dimensional metric sequences, applies nonlinear transformations to extract cross-dimensional dynamic features, and integrates multiple source information such as resource utilization, scheduling behavior, and task load variations within a shared representation space. It then introduces a graph-based modeling mechanism to capture latent dependencies among metrics, allowing the model to learn competitive propagation patterns and structural interference across resource links. On this basis, task-specific mapping structures are designed to model the differences among contention types and enhance the classifier's ability to distinguish multiple contention patterns. To achieve stable performance, the method employs an adaptive multi-task loss weighting strategy that balances shared feature learning with task-specific feature extraction and generates final contention predictions through a standardized inference process. Experiments conducted on a public system trace dataset demonstrate advantages in accuracy, recall, precision, and F1, and sensitivity analyses on batch size, training sample scale, and metric dimensionality further confirm the model's stability and applicability. The study shows that structured representations and multi-task classification based on high-dimensional metrics can significantly improve contention pattern recognition and offer a reliable technical approach for performance management in complex computing environments.
Abstract:This paper proposes a structure-aware decoding method based on large language models to address the difficulty of traditional approaches in maintaining both semantic integrity and structural consistency in nested and overlapping entity extraction tasks. The method introduces a candidate span generation mechanism and structured attention modeling to achieve unified modeling of entity boundaries, hierarchical relationships, and cross-dependencies. The model first uses a pretrained language model to obtain context-aware semantic representations, then captures multi-granular entity span features through candidate representation combinations, and introduces hierarchical structural constraints during decoding to ensure consistency between semantics and structure. To enhance stability in complex scenarios, the model jointly optimizes classification loss and structural consistency loss, maintaining high recognition accuracy under multi-entity co-occurrence and long-sentence dependency conditions. Experiments conducted on the ACE 2005 dataset demonstrate significant improvements in Accuracy, Precision, Recall, and F1-Score, particularly in nested and overlapping entity recognition, where the model shows stronger boundary localization and structural modeling capability. This study verifies the effectiveness of structure-aware decoding in complex semantic extraction tasks, provides a new perspective for developing language models with hierarchical understanding, and establishes a methodological foundation for high-precision information extraction.
Abstract:This paper proposes a composable fine-tuning method that integrates graph structural priors with modular adapters to address the high computational cost and structural instability faced by large-scale pre-trained models in multi-task adaptation. The method introduces a relation matrix to model dependencies among tasks, explicitly encoding correlations between nodes and paths into graph structural priors, which provide unified structural constraints for adapter weight allocation and path selection. Modular adapters are embedded into different layers through low-rank mapping and a pluggable mechanism, enabling efficient cross-task composition and reuse under prior guidance. This mechanism not only improves parameter efficiency and training stability but also alleviates path conflicts and redundant computation in multi-task scenarios. Furthermore, experiments on hyperparameter sensitivity, environmental sensitivity, and data sensitivity are conducted to systematically analyze key factors such as routing temperature, gating thresholds, and relation matrix regularization strength, verifying the consistency and superior performance of the method under structural constraints. The results demonstrate that the proposed framework significantly enhances task prediction accuracy, adapter weight allocation precision, and overall computational efficiency while maintaining model lightweight design, highlighting the synergistic advantages of graph priors and modular mechanisms in composable fine-tuning.