Abstract:Large multimodal models (LMMs) have demonstrated outstanding capabilities in various visual perception tasks, which has in turn made the evaluation of LMMs significant. However, the capability of video aesthetic quality assessment, which is a fundamental ability for human, remains underexplored for LMMs. To address this, we introduce VideoAesBench, a comprehensive benchmark for evaluating LMMs' understanding of video aesthetic quality. VideoAesBench has several significant characteristics: (1) Diverse content including 1,804 videos from multiple video sources including user-generated (UGC), AI-generated (AIGC), compressed, robotic-generated (RGC), and game videos. (2) Multiple question formats containing traditional single-choice questions, multi-choice questions, True or False questions, and a novel open-ended questions for video aesthetics description. (3) Holistic video aesthetics dimensions including visual form related questions from 5 aspects, visual style related questions from 4 aspects, and visual affectiveness questions from 3 aspects. Based on VideoAesBench, we benchmark 23 open-source and commercial large multimodal models. Our findings show that current LMMs only contain basic video aesthetics perception ability, their performance remains incomplete and imprecise. We hope our VideoAesBench can be served as a strong testbed and offer insights for explainable video aesthetics assessment.
Abstract:Graphical user interface (GUI) agents are rapidly progressing toward autonomous interaction and reliable task execution across diverse applications. However, two central challenges remain unresolved: automating the evaluation of agent trajectories and generating high-quality training data at scale to enable continual improvement. Existing approaches often depend on manual annotation or static rule-based verification, which restricts scalability and limits adaptability in dynamic environments. We present MagicGUI-RMS, a multi-agent reward model system that delivers adaptive trajectory evaluation, corrective feedback, and self-evolving learning capabilities. MagicGUI-RMS integrates a Domain-Specific Reward Model (DS-RM) with a General-Purpose Reward Model (GP-RM), enabling fine-grained action assessment and robust generalization across heterogeneous GUI tasks. To support reward learning at scale, we design a structured data construction pipeline that automatically produces balanced and diverse reward datasets, effectively reducing annotation costs while maintaining sample fidelity. During execution, the reward model system identifies erroneous actions, proposes refined alternatives, and continuously enhances agent behavior through an automated data-reflux mechanism. Extensive experiments demonstrate that MagicGUI-RMS yields substantial gains in task accuracy, behavioral robustness. These results establish MagicGUI-RMS as a principled and effective foundation for building self-improving GUI agents driven by reward-based adaptation.