Abstract:Preference learning has become a central technique for aligning generative models with human expectations. Recently, it has been extended to diffusion models through methods like Direct Preference Optimization (DPO). However, existing approaches such as Diffusion-DPO suffer from two key challenges: timestep-dependent instability, caused by a mismatch between the reverse and forward diffusion processes and by high gradient variance in early noisy timesteps, and off-policy bias arising from the mismatch between optimization and data collection policies. We begin by analyzing the reverse diffusion trajectory and observe that instability primarily occurs at early timesteps with low importance weights. To address these issues, we first propose DPO-C\&M, a practical strategy that improves stability by clipping and masking uninformative timesteps while partially mitigating off-policy bias. Building on this, we introduce SDPO (Importance-Sampled Direct Preference Optimization), a principled framework that incorporates importance sampling into the objective to fully correct for off-policy bias and emphasize informative updates during the diffusion process. Experiments on CogVideoX-2B, CogVideoX-5B, and Wan2.1-1.3B demonstrate that both methods outperform standard Diffusion-DPO, with SDPO achieving superior VBench scores, human preference alignment, and training robustness. These results highlight the importance of timestep-aware, distribution-corrected optimization in diffusion-based preference learning.
Abstract:Large Language Model (LLM)-based agents have demonstrated the ability to improve performance in chemistry-related tasks by selecting appropriate tools. However, their effectiveness remains limited by the inherent prediction errors of chemistry tools. In this paper, we take a step further by exploring how LLMbased agents can, in turn, be leveraged to reduce prediction errors of the tools. To this end, we propose ChemHAS (Chemical Hierarchical Agent Stacking), a simple yet effective method that enhances chemistry tools through optimizing agent-stacking structures from limited data. ChemHAS achieves state-of-the-art performance across four fundamental chemistry tasks, demonstrating that our method can effectively compensate for prediction errors of the tools. Furthermore, we identify and characterize four distinct agent-stacking behaviors, potentially improving interpretability and revealing new possibilities for AI agent applications in scientific research. Our code and dataset are publicly available at https: //anonymous.4open.science/r/ChemHAS-01E4/README.md.
Abstract:Learning effective data representations is crucial in answering if two samples X and Y are from the same distribution (a.k.a. the non-parametric two-sample testing problem), which can be categorized into: i) learning discriminative representations (DRs) that distinguish between two samples in a supervised-learning paradigm, and ii) learning inherent representations (IRs) focusing on data's inherent features in an unsupervised-learning paradigm. However, both paradigms have issues: learning DRs reduces the data points available for the two-sample testing phase, and learning purely IRs misses discriminative cues. To mitigate both issues, we propose a novel perspective to consider non-parametric two-sample testing as a semi-supervised learning (SSL) problem, introducing the SSL-based Classifier Two-Sample Test (SSL-C2ST) framework. While a straightforward implementation of SSL-C2ST might directly use existing state-of-the-art (SOTA) SSL methods to train a classifier with labeled data (with sample indexes X or Y) and unlabeled data (the remaining ones in the two samples), conventional two-sample testing data often exhibits substantial overlap between samples and violates SSL methods' assumptions, resulting in low test power. Therefore, we propose a two-step approach: first, learn IRs using all data, then fine-tune IRs with only labelled data to learn DRs, which can both utilize information from whole dataset and adapt the discriminative power to the given data. Extensive experiments and theoretical analysis demonstrate that SSL-C2ST outperforms traditional C2ST by effectively leveraging unlabeled data. We also offer a stronger empirically designed test achieving the SOTA performance in many two-sample testing datasets.