Discrepancy measures between probability distributions are at the core of statistical inference and machine learning. In many applications, distributions of interest are supported on different spaces, and yet a meaningful correspondence between data points is desired. Motivated to explicitly encode consistent bidirectional maps into the discrepancy measure, this work proposes a novel unbalanced Monge optimal transport formulation for matching, up to isometries, distributions on different spaces. Our formulation arises as a principled relaxation of the Gromov-Haussdroff distance between metric spaces, and employs two cycle-consistent maps that push forward each distribution onto the other. We study structural properties of the proposed discrepancy and, in particular, show that it captures the popular cycle-consistent generative adversarial network (GAN) framework as a special case, thereby providing the theory to explain it. Motivated by computational efficiency, we then kernelize the discrepancy and restrict the mappings to parametric function classes. The resulting kernelized version is coined the generalized maximum mean discrepancy (GMMD). Convergence rates for empirical estimation of GMMD are studied and experiments to support our theory are provided.
Statistical distances (SDs), which quantify the dissimilarity between probability distributions, are central to machine learning and statistics. A modern method for estimating such distances from data relies on parametrizing a variational form by a neural network (NN) and optimizing it. These estimators are abundantly used in practice, but corresponding performance guarantees are partial and call for further exploration. In particular, there seems to be a fundamental tradeoff between the two sources of error involved: approximation and estimation. While the former needs the NN class to be rich and expressive, the latter relies on controlling complexity. This paper explores this tradeoff by means of non-asymptotic error bounds, focusing on three popular choices of SDs -- Kullback-Leibler divergence, chi-squared divergence, and squared Hellinger distance. Our analysis relies on non-asymptotic function approximation theorems and tools from empirical process theory. Numerical results validating the theory are also provided.
Road extraction from aerial images has been a hot research topic in the field of remote sensing image analysis. In this letter, a semantic segmentation neural network which combines the strengths of residual learning and U-Net is proposed for road area extraction. The network is built with residual units and has similar architecture to that of U-Net. The benefits of this model is two-fold: first, residual units ease training of deep networks. Second, the rich skip connections within the network could facilitate information propagation, allowing us to design networks with fewer parameters however better performance. We test our network on a public road dataset and compare it with U-Net and other two state of the art deep learning based road extraction methods. The proposed approach outperforms all the comparing methods, which demonstrates its superiority over recently developed state of the arts.