



Abstract:Large-scale incremental mapping is fundamental to the development of robust and reliable autonomous systems, as it underpins incremental environmental understanding with sequential inputs for navigation and decision-making. LiDAR is widely used for this purpose due to its accuracy and robustness. Recently, neural LiDAR mapping has shown impressive performance; however, most approaches rely on dense implicit representations and underutilize geometric structure, while existing voxel-guided methods struggle to achieve real-time performance. To address these challenges, we propose XGrid-Mapping, a hybrid grid framework that jointly exploits explicit and implicit representations for efficient neural LiDAR mapping. Specifically, the strategy combines a sparse grid, providing geometric priors and structural guidance, with an implicit dense grid that enriches scene representation. By coupling the VDB structure with a submap-based organization, the framework reduces computational load and enables efficient incremental mapping on a large scale. To mitigate discontinuities across submaps, we introduce a distillation-based overlap alignment strategy, in which preceding submaps supervise subsequent ones to ensure consistency in overlapping regions. To further enhance robustness and sampling efficiency, we incorporate a dynamic removal module. Extensive experiments show that our approach delivers superior mapping quality while overcoming the efficiency limitations of voxel-guided methods, thereby outperforming existing state-of-the-art mapping methods.
Abstract:The rapid advancement of large-scale language models (LLMs) has shown their potential to transform intelligent education systems (IESs) through automated teaching and learning support applications. However, current IESs often rely on single-turn static question-answering, which fails to assess learners' cognitive levels, cannot adjust teaching strategies based on real-time feedback, and is limited to providing simple one-off responses. To address these issues, we introduce AgentTutor, a multi-turn interactive intelligent education system to empower personalized learning. It features an LLM-powered generative multi-agent system and a learner-specific personalized learning profile environment that dynamically optimizes and delivers teaching strategies based on learners' learning status, personalized goals, learning preferences, and multimodal study materials. It includes five key modules: curriculum decomposition, learner assessment, dynamic strategy, teaching reflection, and knowledge & experience memory. We conducted extensive experiments on multiple benchmark datasets, AgentTutor significantly enhances learners' performance while demonstrating strong effectiveness in multi-turn interactions and competitiveness in teaching quality among other baselines.