Abstract:In hyperspectral image classification (HSIC), most deep learning models rely on opaque spectral-spatial feature mixing, limiting their interpretability and hindering understanding of internal decision mechanisms. We present physical spectrum-aware white-box mHC, named ES-mHC, a hyper-connection framework that explicitly models interactions among different electromagnetic spectrum groupings (residual stream in mHC) interactions using structured, directional matrices. By separating feature representation from interaction structure, ES-mHC promotes electromagnetic spectrum grouping specialization, reduces redundancy, and exposes internal information flow that can be directly visualized and spatially analyzed. Using hyperspectral image classification as a representative testbed, we demonstrate that the learned hyper-connection matrices exhibit coherent spatial patterns and asymmetric interaction behaviors, providing mechanistic insight into the model internal dynamics. Furthermore, we find that increasing the expansion rate accelerates the emergence of structured interaction patterns. These results suggest that ES-mHC transforms HSIC from a purely black-box prediction task into a structurally transparent, partially white-box learning process.
Abstract:Although Mamba models greatly improve Hyperspectral Image (HSI) classification, they have critical challenges in terms defining efficient and adaptive token sequences for improve performance. This paper therefore presents CSSMamba (Clustering-guided Spatial-Spectral Mamba) framework to better address the challenges, with the following contributions. First, to achieve efficient and adaptive token sequences for improved Mamba performance, we integrate the clustering mechanism into a spatial Mamba architecture, leading to a cluster-guided spatial Mamba module (CSpaMamba) that reduces the Mamba sequence length and improves Mamba feature learning capability. Second, to improve the learning of both spatial and spectral information, we integrate the CSpaMamba module with a spectral mamba module (SpeMamba), leading to a complete clustering-guided spatial-spectral Mamba framework. Third, to further improve feature learning capability, we introduce an Attention-Driven Token Selection mechanism to optimize Mamba token sequencing. Last, to seamlessly integrate clustering into the Mamba model in a coherent manner, we design a Learnable Clustering Module that learns the cluster memberships in an adaptive manner. Experiments on the Pavia University, Indian Pines, and Liao-Ning 01 datasets demonstrate that CSSMamba achieves higher accuracy and better boundary preservation compared to state-of-the-art CNN, Transformer, and Mamba-based methods.
Abstract:In recent decades, the intensification of wildfire activity in western Canada has resulted in substantial socio-economic and environmental losses. Accurate wildfire risk prediction is hindered by the intrinsic stochasticity of ignition and spread and by nonlinear interactions among fuel conditions, meteorology, climate variability, topography, and human activities, challenging the reliability and interpretability of purely data-driven models. We propose a trustworthy data-driven wildfire risk prediction framework based on long-sequence, multi-scale temporal modeling, which integrates heterogeneous drivers while explicitly quantifying predictive uncertainty and enabling process-level interpretation. Evaluated over western Canada during the record-breaking 2023 and 2024 fire seasons, the proposed model outperforms existing time-series approaches, achieving an F1 score of 0.90 and a PR-AUC of 0.98 with low computational cost. Uncertainty-aware analysis reveals structured spatial and seasonal patterns in predictive confidence, highlighting increased uncertainty associated with ambiguous predictions and spatiotemporal decision boundaries. SHAP-based interpretation provides mechanistic understanding of wildfire controls, showing that temperature-related drivers dominate wildfire risk in both years, while moisture-related constraints play a stronger role in shaping spatial and land-cover-specific contrasts in 2024 compared to the widespread hot and dry conditions of 2023. Data and code are available at https://github.com/SynUW/mmFire.
Abstract:Although Sentinel-2 based land use and land cover (LULC) classification is critical for various environmental monitoring applications, it is a very difficult task due to some key data challenges (e.g., spatial heterogeneity, context information, signature ambiguity). This paper presents a novel Multitask Glocal OBIA-Mamba (MSOM) for enhanced Sentinel-2 classification with the following contributions. First, an object-based image analysis (OBIA) Mamba model (OBIA-Mamba) is designed to reduce redundant computation without compromising fine-grained details by using superpixels as Mamba tokens. Second, a global-local (GLocal) dual-branch convolutional neural network (CNN)-mamba architecture is designed to jointly model local spatial detail and global contextual information. Third, a multitask optimization framework is designed to employ dual loss functions to balance local precision with global consistency. The proposed approach is tested on Sentinel-2 imagery in Alberta, Canada, in comparison with several advanced classification approaches, and the results demonstrate that the proposed approach achieves higher classification accuracy and finer details that the other state-of-the-art methods.




Abstract:Although Mamba models significantly improve hyperspectral image (HSI) classification, one critical challenge is the difficulty in building the sequence of Mamba tokens efficiently. This paper presents a Sparse Deformable Mamba (SDMamba) approach for enhanced HSI classification, with the following contributions. First, to enhance Mamba sequence, an efficient Sparse Deformable Sequencing (SDS) approach is designed to adaptively learn the ''optimal" sequence, leading to sparse and deformable Mamba sequence with increased detail preservation and decreased computations. Second, to boost spatial-spectral feature learning, based on SDS, a Sparse Deformable Spatial Mamba Module (SDSpaM) and a Sparse Deformable Spectral Mamba Module (SDSpeM) are designed for tailored modeling of the spatial information spectral information. Last, to improve the fusion of SDSpaM and SDSpeM, an attention based feature fusion approach is designed to integrate the outputs of the SDSpaM and SDSpeM. The proposed method is tested on several benchmark datasets with many state-of-the-art approaches, demonstrating that the proposed approach can achieve higher accuracy with less computation, and better detail small-class preservation capability.
Abstract:This paper utilizes statistical data from various open datasets in Calgary to to uncover patterns and insights for community crimes, disorders, and traffic incidents. Community attributes like demographics, housing, and pet registration were collected and analyzed through geospatial visualization and correlation analysis. Strongly correlated features were identified using the chi-square test, and predictive models were built using association rule mining and machine learning algorithms. The findings suggest that crime rates are closely linked to factors such as population density, while pet registration has a smaller impact. This study offers valuable insights for city managers to enhance community safety strategies.