Abstract:Linear spectral mixture models (LMM) provide a concise form to disentangle the constituent materials (endmembers) and their corresponding proportions (abundance) in a single pixel. The critical challenges are how to model the spectral prior distribution and spectral variability. Prior knowledge and spectral variability can be rigorously modeled under the Bayesian framework, where posterior estimation of Abundance is derived by combining observed data with endmember prior distribution. Considering the key challenges and the advantages of the Bayesian framework, a novel method using a diffusion posterior sampler for semiblind unmixing, denoted as DPS4Un, is proposed to deal with these challenges with the following features: (1) we view the pretrained conditional spectrum diffusion model as a posterior sampler, which can combine the learned endmember prior with observation to get the refined abundance distribution. (2) Instead of using the existing spectral library as prior, which may raise bias, we establish the image-based endmember bundles within superpixels, which are used to train the endmember prior learner with diffusion model. Superpixels make sure the sub-scene is more homogeneous. (3) Instead of using the image-level data consistency constraint, the superpixel-based data fidelity term is proposed. (4) The endmember is initialized as Gaussian noise for each superpixel region, DPS4Un iteratively updates the abundance and endmember, contributing to spectral variability modeling. The experimental results on three real-world benchmark datasets demonstrate that DPS4Un outperforms the state-of-the-art hyperspectral unmixing methods.
Abstract:Although Sentinel-2 based land use and land cover (LULC) classification is critical for various environmental monitoring applications, it is a very difficult task due to some key data challenges (e.g., spatial heterogeneity, context information, signature ambiguity). This paper presents a novel Multitask Glocal OBIA-Mamba (MSOM) for enhanced Sentinel-2 classification with the following contributions. First, an object-based image analysis (OBIA) Mamba model (OBIA-Mamba) is designed to reduce redundant computation without compromising fine-grained details by using superpixels as Mamba tokens. Second, a global-local (GLocal) dual-branch convolutional neural network (CNN)-mamba architecture is designed to jointly model local spatial detail and global contextual information. Third, a multitask optimization framework is designed to employ dual loss functions to balance local precision with global consistency. The proposed approach is tested on Sentinel-2 imagery in Alberta, Canada, in comparison with several advanced classification approaches, and the results demonstrate that the proposed approach achieves higher classification accuracy and finer details that the other state-of-the-art methods.




Abstract:Although Mamba models significantly improve hyperspectral image (HSI) classification, one critical challenge is the difficulty in building the sequence of Mamba tokens efficiently. This paper presents a Sparse Deformable Mamba (SDMamba) approach for enhanced HSI classification, with the following contributions. First, to enhance Mamba sequence, an efficient Sparse Deformable Sequencing (SDS) approach is designed to adaptively learn the ''optimal" sequence, leading to sparse and deformable Mamba sequence with increased detail preservation and decreased computations. Second, to boost spatial-spectral feature learning, based on SDS, a Sparse Deformable Spatial Mamba Module (SDSpaM) and a Sparse Deformable Spectral Mamba Module (SDSpeM) are designed for tailored modeling of the spatial information spectral information. Last, to improve the fusion of SDSpaM and SDSpeM, an attention based feature fusion approach is designed to integrate the outputs of the SDSpaM and SDSpeM. The proposed method is tested on several benchmark datasets with many state-of-the-art approaches, demonstrating that the proposed approach can achieve higher accuracy with less computation, and better detail small-class preservation capability.