Abstract:Imagine observing someone scratching their arm; to understand why, additional context would be necessary. However, spotting a mosquito nearby would immediately offer a likely explanation for the person's discomfort, thereby alleviating the need for further information. This example illustrates how subtle visual cues can challenge our cognitive skills and demonstrates the complexity of interpreting visual scenarios. To study these skills, we present Visual Riddles, a benchmark aimed to test vision and language models on visual riddles requiring commonsense and world knowledge. The benchmark comprises 400 visual riddles, each featuring a unique image created by a variety of text-to-image models, question, ground-truth answer, textual hint, and attribution. Human evaluation reveals that existing models lag significantly behind human performance, which is at 82\% accuracy, with Gemini-Pro-1.5 leading with 40\% accuracy. Our benchmark comes with automatic evaluation tasks to make assessment scalable. These findings underscore the potential of Visual Riddles as a valuable resource for enhancing vision and language models' capabilities in interpreting complex visual scenarios.
Abstract:Recent progress in generative models has made it easier for a wide audience to edit and create image content, raising concerns about the proliferation of deepfakes, especially in healthcare. Despite the availability of numerous techniques for detecting manipulated images captured by conventional cameras, their applicability to medical images is limited. This limitation stems from the distinctive forensic characteristics of medical images, a result of their imaging process. In this work we propose a novel anomaly detector for medical imagery based on diffusion models. Normally, diffusion models are used to generate images. However, we show how a similar process can be used to detect synthetic content by making a model reverse the diffusion on a suspected image. We evaluate our method on the task of detecting fake tumors injected and removed from CT and MRI scans. Our method significantly outperforms other state of the art unsupervised detectors with an increased AUC of 0.9 from 0.79 for injection and of 0.96 from 0.91 for removal on average.
Abstract:Communication network engineering in enterprise environments is traditionally a complex, time-consuming, and error-prone manual process. Most research on network engineering automation has concentrated on configuration synthesis, often overlooking changes in the physical network topology. This paper introduces GeNet, a multimodal co-pilot for enterprise network engineers. GeNet is a novel framework that leverages a large language model (LLM) to streamline network design workflows. It uses visual and textual modalities to interpret and update network topologies and device configurations based on user intents. GeNet was evaluated on enterprise network scenarios adapted from Cisco certification exercises. Our results demonstrate GeNet's ability to interpret network topology images accurately, potentially reducing network engineers' efforts and accelerating network design processes in enterprise environments. Furthermore, we show the importance of precise topology understanding when handling intents that require modifications to the network's topology.
Abstract:As the number and sophistication of cyber attacks have increased, threat hunting has become a critical aspect of active security, enabling proactive detection and mitigation of threats before they cause significant harm. Open-source cyber threat intelligence (OS-CTI) is a valuable resource for threat hunters, however, it often comes in unstructured formats that require further manual analysis. Previous studies aimed at automating OSCTI analysis are limited since (1) they failed to provide actionable outputs, (2) they did not take advantage of images present in OSCTI sources, and (3) they focused on on-premises environments, overlooking the growing importance of cloud environments. To address these gaps, we propose LLMCloudHunter, a novel framework that leverages large language models (LLMs) to automatically generate generic-signature detection rule candidates from textual and visual OSCTI data. We evaluated the quality of the rules generated by the proposed framework using 12 annotated real-world cloud threat reports. The results show that our framework achieved a precision of 92% and recall of 98% for the task of accurately extracting API calls made by the threat actor and a precision of 99% with a recall of 98% for IoCs. Additionally, 99.18% of the generated detection rule candidates were successfully compiled and converted into Splunk queries.
Abstract:Advanced persistent threats (APTs) pose significant challenges for organizations, leading to data breaches, financial losses, and reputational damage. Existing provenance-based approaches for APT detection often struggle with high false positive rates, a lack of interpretability, and an inability to adapt to evolving system behavior. We introduce RAPID, a novel deep learning-based method for robust APT detection and investigation, leveraging context-aware anomaly detection and alert tracing. By utilizing self-supervised sequence learning and iteratively learned embeddings, our approach effectively adapts to dynamic system behavior. The use of provenance tracing both enriches the alerts and enhances the detection capabilities of our approach. Our extensive evaluation demonstrates RAPID's effectiveness and computational efficiency in real-world scenarios. In addition, RAPID achieves higher precision and recall than state-of-the-art methods, significantly reducing false positives. RAPID integrates contextual information and facilitates a smooth transition from detection to investigation, providing security teams with detailed insights to efficiently address APT threats.
Abstract:A key challenge associated with Kubernetes configuration files (KCFs) is that they are often highly complex and error-prone, leading to security vulnerabilities and operational setbacks. Rule-based (RB) tools for KCF misconfiguration detection rely on static rule sets, making them inherently limited and unable to detect newly-discovered misconfigurations. RB tools also suffer from misdetection, since mistakes are likely when coding the detection rules. Recent methods for detecting and remediating KCF misconfigurations are limited in terms of their scalability and detection coverage, or due to the fact that they have high expertise requirements and do not offer automated remediation along with misconfiguration detection. Novel approaches that employ LLMs in their pipeline rely on API-based, general-purpose, and mainly commercial models. Thus, they pose security challenges, have inconsistent classification performance, and can be costly. In this paper, we propose GenKubeSec, a comprehensive and adaptive, LLM-based method, which, in addition to detecting a wide variety of KCF misconfigurations, also identifies the exact location of the misconfigurations and provides detailed reasoning about them, along with suggested remediation. When empirically compared with three industry-standard RB tools, GenKubeSec achieved equivalent precision (0.990) and superior recall (0.999). When a random sample of KCFs was examined by a Kubernetes security expert, GenKubeSec's explanations as to misconfiguration localization, reasoning and remediation were 100% correct, informative and useful. To facilitate further advancements in this domain, we share the unique dataset we collected, a unified misconfiguration index we developed for label standardization, our experimentation code, and GenKubeSec itself as an open-source tool.
Abstract:LLM-based code assistants are becoming increasingly popular among developers. These tools help developers improve their coding efficiency and reduce errors by providing real-time suggestions based on the developer's codebase. While beneficial, these tools might inadvertently expose the developer's proprietary code to the code assistant service provider during the development process. In this work, we propose two complementary methods to mitigate the risk of code leakage when using LLM-based code assistants. The first is a technique for reconstructing a developer's original codebase from code segments sent to the code assistant service (i.e., prompts) during the development process, enabling assessment and evaluation of the extent of code leakage to third parties (or adversaries). The second is CodeCloak, a novel deep reinforcement learning agent that manipulates the prompts before sending them to the code assistant service. CodeCloak aims to achieve the following two contradictory goals: (i) minimizing code leakage, while (ii) preserving relevant and useful suggestions for the developer. Our evaluation, employing GitHub Copilot, StarCoder, and CodeLlama LLM-based code assistants models, demonstrates the effectiveness of our CodeCloak approach on a diverse set of code repositories of varying sizes, as well as its transferability across different models. In addition, we generate a realistic simulated coding environment to thoroughly analyze code leakage risks and evaluate the effectiveness of our proposed mitigation techniques under practical development scenarios.
Abstract:Vision transformers have contributed greatly to advancements in the computer vision domain, demonstrating state-of-the-art performance in diverse tasks (e.g., image classification, object detection). However, their high computational requirements grow quadratically with the number of tokens used. Token sparsification techniques have been proposed to address this issue. These techniques employ an input-dependent strategy, in which uninformative tokens are discarded from the computation pipeline, improving the model's efficiency. However, their dynamism and average-case assumption makes them vulnerable to a new threat vector - carefully crafted adversarial examples capable of fooling the sparsification mechanism, resulting in worst-case performance. In this paper, we present DeSparsify, an attack targeting the availability of vision transformers that use token sparsification mechanisms. The attack aims to exhaust the operating system's resources, while maintaining its stealthiness. Our evaluation demonstrates the attack's effectiveness on three token sparsification techniques and examines the attack's transferability between them and its effect on the GPU resources. To mitigate the impact of the attack, we propose various countermeasures.
Abstract:In November 2023, OpenAI introduced a new service allowing users to create custom versions of ChatGPT (GPTs) by using specific instructions and knowledge to guide the model's behavior. We aim to raise awareness of the fact that GPTs can be used maliciously, posing privacy and security risks to their users.
Abstract:In recent years, there has been a significant trend in deep neural networks (DNNs), particularly transformer-based models, of developing ever-larger and more capable models. While they demonstrate state-of-the-art performance, their growing scale requires increased computational resources (e.g., GPUs with greater memory capacity). To address this problem, quantization techniques (i.e., low-bit-precision representation and matrix multiplication) have been proposed. Most quantization techniques employ a static strategy in which the model parameters are quantized, either during training or inference, without considering the test-time sample. In contrast, dynamic quantization techniques, which have become increasingly popular, adapt during inference based on the input provided, while maintaining full-precision performance. However, their dynamic behavior and average-case performance assumption makes them vulnerable to a novel threat vector -- adversarial attacks that target the model's efficiency and availability. In this paper, we present QuantAttack, a novel attack that targets the availability of quantized models, slowing down the inference, and increasing memory usage and energy consumption. We show that carefully crafted adversarial examples, which are designed to exhaust the resources of the operating system, can trigger worst-case performance. In our experiments, we demonstrate the effectiveness of our attack on vision transformers on a wide range of tasks, both uni-modal and multi-modal. We also examine the effect of different attack variants (e.g., a universal perturbation) and the transferability between different models.