Abstract:Large language models (LLMs) are increasingly trained on tabular data, which, unlike unstructured text, often contains personally identifiable information (PII) in a highly structured and explicit format. As a result, privacy risks arise, since sensitive records can be inadvertently retained by the model and exposed through data extraction or membership inference attacks (MIAs). While existing MIA methods primarily target textual content, their efficacy and threat implications may differ when applied to structured data, due to its limited content, diverse data types, unique value distributions, and column-level semantics. In this paper, we present Tab-MIA, a benchmark dataset for evaluating MIAs on tabular data in LLMs and demonstrate how it can be used. Tab-MIA comprises five data collections, each represented in six different encoding formats. Using our Tab-MIA benchmark, we conduct the first evaluation of state-of-the-art MIA methods on LLMs finetuned with tabular data across multiple encoding formats. In the evaluation, we analyze the memorization behavior of pretrained LLMs on structured data derived from Wikipedia tables. Our findings show that LLMs memorize tabular data in ways that vary across encoding formats, making them susceptible to extraction via MIAs. Even when fine-tuned for as few as three epochs, models exhibit high vulnerability, with AUROC scores approaching 90% in most cases. Tab-MIA enables systematic evaluation of these risks and provides a foundation for developing privacy-preserving methods for tabular data in LLMs.
Abstract:Large language models (LLMs) can be trained or fine-tuned on data obtained without the owner's consent. Verifying whether a specific LLM was trained on particular data instances or an entire dataset is extremely challenging. Dataset watermarking addresses this by embedding identifiable modifications in training data to detect unauthorized use. However, existing methods often lack stealth, making them relatively easy to detect and remove. In light of these limitations, we propose LexiMark, a novel watermarking technique designed for text and documents, which embeds synonym substitutions for carefully selected high-entropy words. Our method aims to enhance an LLM's memorization capabilities on the watermarked text without altering the semantic integrity of the text. As a result, the watermark is difficult to detect, blending seamlessly into the text with no visible markers, and is resistant to removal due to its subtle, contextually appropriate substitutions that evade automated and manual detection. We evaluated our method using baseline datasets from recent studies and seven open-source models: LLaMA-1 7B, LLaMA-3 8B, Mistral 7B, Pythia 6.9B, as well as three smaller variants from the Pythia family (160M, 410M, and 1B). Our evaluation spans multiple training settings, including continued pretraining and fine-tuning scenarios. The results demonstrate significant improvements in AUROC scores compared to existing methods, underscoring our method's effectiveness in reliably verifying whether unauthorized watermarked data was used in LLM training.
Abstract:Large language models (LLMs) have become essential digital task assistance tools. Their training relies heavily on the collection of vast amounts of data, which may include copyright-protected or sensitive information. Recent studies on the detection of pretraining data in LLMs have primarily focused on sentence-level or paragraph-level membership inference attacks (MIAs), usually involving probability analysis of the target model prediction tokens. However, the proposed methods often demonstrate poor performance, specifically in terms of accuracy, failing to account for the semantic importance of textual content and word significance. To address these shortcomings, we propose Tag&Tab, a novel approach for detecting data that has been used as part of the LLM pretraining. Our method leverages advanced natural language processing (NLP) techniques to tag keywords in the input text - a process we term Tagging. Then, the LLM is used to obtain the probabilities of these keywords and calculate their average log-likelihood to determine input text membership, a process we refer to as Tabbing. Our experiments on three benchmark datasets (BookMIA, MIMIR, and the Pile) and several open-source LLMs of varying sizes demonstrate an average increase in the AUC scores ranging from 4.1% to 12.1% over state-of-the-art methods. Tag&Tab not only sets a new standard for data leakage detection in LLMs, but its outstanding performance is a testament to the importance of words in MIAs on LLMs.
Abstract:In November 2023, OpenAI introduced a new service allowing users to create custom versions of ChatGPT (GPTs) by using specific instructions and knowledge to guide the model's behavior. We aim to raise awareness of the fact that GPTs can be used maliciously, posing privacy and security risks to their users.