Alert button
Picture for Yupeng Wu

Yupeng Wu

Alert button

Victor

On the Opportunities of Green Computing: A Survey

Nov 09, 2023
You Zhou, Xiujing Lin, Xiang Zhang, Maolin Wang, Gangwei Jiang, Huakang Lu, Yupeng Wu, Kai Zhang, Zhe Yang, Kehang Wang, Yongduo Sui, Fengwei Jia, Zuoli Tang, Yao Zhao, Hongxuan Zhang, Tiannuo Yang, Weibo Chen, Yunong Mao, Yi Li, De Bao, Yu Li, Hongrui Liao, Ting Liu, Jingwen Liu, Jinchi Guo, Xiangyu Zhao, Ying WEI, Hong Qian, Qi Liu, Xiang Wang, Wai Kin, Chan, Chenliang Li, Yusen Li, Shiyu Yang, Jining Yan, Chao Mou, Shuai Han, Wuxia Jin, Guannan Zhang, Xiaodong Zeng

Figure 1 for On the Opportunities of Green Computing: A Survey
Figure 2 for On the Opportunities of Green Computing: A Survey
Figure 3 for On the Opportunities of Green Computing: A Survey
Figure 4 for On the Opportunities of Green Computing: A Survey

Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.

* 113 pages, 18 figures 
Viaarxiv icon

Distributional Reinforcement Learning with Online Risk-awareness Adaption

Oct 08, 2023
Yupeng Wu, Wenjie Huang

Figure 1 for Distributional Reinforcement Learning with Online Risk-awareness Adaption
Figure 2 for Distributional Reinforcement Learning with Online Risk-awareness Adaption
Figure 3 for Distributional Reinforcement Learning with Online Risk-awareness Adaption
Figure 4 for Distributional Reinforcement Learning with Online Risk-awareness Adaption

The use of reinforcement learning (RL) in practical applications requires considering sub-optimal outcomes, which depend on the agent's familiarity with the uncertain environment. Dynamically adjusting the level of epistemic risk over the course of learning can tactically achieve reliable optimal policy in safety-critical environments and tackle the sub-optimality of a static risk level. In this work, we introduce a novel framework, Distributional RL with Online Risk Adaption (DRL-ORA), which can quantify the aleatory and epistemic uncertainties compositely and dynamically select the epistemic risk levels via solving a total variation minimization problem online. The risk level selection can be efficiently achieved through grid search using a Follow-The-Leader type algorithm, and its offline oracle is related to "satisficing measure" (in the decision analysis community) under a special modification of the loss function. We show multiple classes of tasks where DRL-ORA outperforms existing methods that rely on either a fixed risk level or manually predetermined risk level adaption. Given the simplicity of our modifications, we believe the framework can be easily incorporated into most RL algorithm variants.

Viaarxiv icon

How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection

Jan 18, 2023
Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran Nie, Yuxuan Ding, Jianwei Yue, Yupeng Wu

Figure 1 for How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection
Figure 2 for How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection
Figure 3 for How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection
Figure 4 for How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection

The introduction of ChatGPT has garnered widespread attention in both academic and industrial communities. ChatGPT is able to respond effectively to a wide range of human questions, providing fluent and comprehensive answers that significantly surpass previous public chatbots in terms of security and usefulness. On one hand, people are curious about how ChatGPT is able to achieve such strength and how far it is from human experts. On the other hand, people are starting to worry about the potential negative impacts that large language models (LLMs) like ChatGPT could have on society, such as fake news, plagiarism, and social security issues. In this work, we collected tens of thousands of comparison responses from both human experts and ChatGPT, with questions ranging from open-domain, financial, medical, legal, and psychological areas. We call the collected dataset the Human ChatGPT Comparison Corpus (HC3). Based on the HC3 dataset, we study the characteristics of ChatGPT's responses, the differences and gaps from human experts, and future directions for LLMs. We conducted comprehensive human evaluations and linguistic analyses of ChatGPT-generated content compared with that of humans, where many interesting results are revealed. After that, we conduct extensive experiments on how to effectively detect whether a certain text is generated by ChatGPT or humans. We build three different detection systems, explore several key factors that influence their effectiveness, and evaluate them in different scenarios. The dataset, code, and models are all publicly available at https://github.com/Hello-SimpleAI/chatgpt-comparison-detection.

* https://github.com/Hello-SimpleAI/chatgpt-comparison-detection 
Viaarxiv icon