Abstract:Conventional operating system scheduling algorithms are largely content-ignorant, making decisions based on factors such as latency or fairness without considering the actual intents or semantics of processes. Consequently, these algorithms often do not prioritize tasks that require urgent attention or carry higher importance, such as in emergency management scenarios. However, recent advances in language models enable semantic analysis of processes, allowing for more intelligent and context-aware scheduling decisions. In this paper, we introduce the concept of semantic scheduling in scheduling of requests from large language models (LLM), where the semantics of the process guide the scheduling priorities. We present a novel scheduling algorithm with optimal time complexity, designed to minimize the overall waiting time in LLM-based prompt scheduling. To illustrate its effectiveness, we present a medical emergency management application, underscoring the potential benefits of semantic scheduling for critical, time-sensitive tasks. The code and data are available at https://github.com/Wenyueh/latency_optimization_with_priority_constraints.
Abstract:This paper envisions a revolutionary AIOS-Agent ecosystem, where Large Language Model (LLM) serves as the (Artificial) Intelligent Operating System (IOS, or AIOS)--an operating system "with soul". Upon this foundation, a diverse range of LLM-based AI Agent Applications (Agents, or AAPs) are developed, enriching the AIOS-Agent ecosystem and signaling a paradigm shift from the traditional OS-APP ecosystem. We envision that LLM's impact will not be limited to the AI application level, instead, it will in turn revolutionize the design and implementation of computer system, architecture, software, and programming language, featured by several main concepts: LLM as OS (system-level), Agents as Applications (application-level), Natural Language as Programming Interface (user-level), and Tools as Devices/Libraries (hardware/middleware-level). We begin by introducing the architecture of traditional OS. Then we formalize a conceptual framework for AIOS through "LLM as OS (LLMOS)", drawing analogies between AIOS and traditional OS: LLM is likened to OS kernel, context window to memory, external storage to file system, hardware tools to peripheral devices, software tools to programming libraries, and user prompts to user commands. Subsequently, we introduce the new AIOS-Agent Ecosystem, where users can easily program Agent Applications (AAPs) using natural language, democratizing the development of software, which is different from the traditional OS-APP ecosystem. Following this, we explore the diverse scope of Agent Applications. We delve into both single-agent and multi-agent systems, as well as human-agent interaction. Lastly, drawing on the insights from traditional OS-APP ecosystem, we propose a roadmap for the evolution of the AIOS-Agent ecosystem. This roadmap is designed to guide the future research and development, suggesting systematic progresses of AIOS and its Agent applications.