Abstract:Although Video Large Language Models perform remarkably well across tasks such as video understanding, question answering, and reasoning, they still suffer from the problem of hallucination, which refers to generating outputs that are inconsistent with explicit video content or factual evidence. However, existing decoding methods for mitigating video hallucinations, while considering the spatiotemporal characteristics of videos, mostly rely on heuristic designs. As a result, they fail to precisely capture the root causes of hallucinations and their fine-grained temporal and semantic correlations, leading to limited robustness and generalization in complex scenarios. To more effectively mitigate video hallucinations, we propose a novel decoding strategy termed Spatiotemporal-Semantic Contrastive Decoding. This strategy constructs negative features by deliberately disrupting the spatiotemporal consistency and semantic associations of video features, and suppresses video hallucinations through contrastive decoding against the original video features during inference. Extensive experiments demonstrate that our method not only effectively mitigates the occurrence of hallucinations, but also preserves the general video understanding and reasoning capabilities of the model.
Abstract:Mental manipulation is a subtle yet pervasive form of psychological abuse that poses serious threats to mental health. Its covert nature and the complexity of manipulation strategies make it challenging to detect, even for state-of-the-art large language models (LLMs). This concealment also hinders the manual collection of large-scale, high-quality annotations essential for training effective models. Although recent efforts have sought to improve LLM's performance on this task, progress remains limited due to the scarcity of real-world annotated datasets. To address these challenges, we propose MentalMAC, a multi-task anti-curriculum distillation method that enhances LLMs' ability to detect mental manipulation in multi-turn dialogue. Our approach includes: (i) EvoSA, an unsupervised data expansion method based on evolutionary operations and speech act theory; (ii) teacher-model-generated multi-task supervision; and (iii) progressive knowledge distillation from complex to simpler tasks. We then constructed the ReaMent dataset with 5,000 real-world dialogue samples, using a MentalMAC-distilled model to assist human annotation. Vast experiments demonstrate that our method significantly narrows the gap between student and teacher models and outperforms competitive LLMs across key evaluation metrics. All code, datasets, and checkpoints will be released upon paper acceptance. Warning: This paper contains content that may be offensive to readers.