Abstract:Wheel-legged robots combine the advantages of both wheeled robots and legged robots, offering versatile locomotion capabilities with excellent stability on challenging terrains and high efficiency on flat surfaces. However, existing wheel-legged robots typically have limited hip joint mobility compared to humans, while hip joint plays a crucial role in locomotion. In this paper, we introduce Whleaper, a novel 10-degree-of-freedom (DOF) bipedal wheeled robot, with 3 DOFs at the hip of each leg. Its humanoid joint design enables adaptable motion in complex scenarios, ensuring stability and flexibility. This paper introduces the details of Whleaper, with a focus on innovative mechanical design, control algorithms and system implementation. Firstly, stability stems from the increased DOFs at the hip, which expand the range of possible postures and improve the robot's foot-ground contact. Secondly, the extra DOFs also augment its mobility. During walking or sliding, more complex movements can be adopted to execute obstacle avoidance tasks. Thirdly, we utilize two control algorithms to implement multimodal motion for walking and sliding. By controlling specific DOFs of the robot, we conducted a series of simulations and practical experiments, demonstrating that a high-DOF hip joint design can effectively enhance the stability and flexibility of wheel-legged robots. Whleaper shows its capability to perform actions such as squatting, obstacle avoidance sliding, and rapid turning in real-world scenarios.
Abstract:Tactile information plays a crucial role for humans and robots to interact effectively with their environment, particularly for tasks requiring the understanding of contact properties. Solving such dexterous manipulation tasks often relies on imitation learning from demonstration datasets, which are typically collected via teleoperation systems and often demand substantial time and effort. To address these challenges, we present ViTaMIn, an embodiment-free manipulation interface that seamlessly integrates visual and tactile sensing into a hand-held gripper, enabling data collection without the need for teleoperation. Our design employs a compliant Fin Ray gripper with tactile sensing, allowing operators to perceive force feedback during manipulation for more intuitive operation. Additionally, we propose a multimodal representation learning strategy to obtain pre-trained tactile representations, improving data efficiency and policy robustness. Experiments on seven contact-rich manipulation tasks demonstrate that ViTaMIn significantly outperforms baseline methods, demonstrating its effectiveness for complex manipulation tasks.