Abstract:Value-based algorithms are a cornerstone of off-policy reinforcement learning due to their simplicity and training stability. However, their use has traditionally been restricted to discrete action spaces, as they rely on estimating Q-values for individual state-action pairs. In continuous action spaces, evaluating the Q-value over the entire action space becomes computationally infeasible. To address this, actor-critic methods are typically employed, where a critic is trained on off-policy data to estimate Q-values, and an actor is trained to maximize the critic's output. Despite their popularity, these methods often suffer from instability during training. In this work, we propose a purely value-based framework for continuous control that revisits structural maximization of Q-functions, introducing a set of key architectural and algorithmic choices to enable efficient and stable learning. We evaluate the proposed actor-free Q-learning approach on a range of standard simulation tasks, demonstrating performance and sample efficiency on par with state-of-the-art baselines, without the cost of learning a separate actor. Particularly, in environments with constrained action spaces, where the value functions are typically non-smooth, our method with structural maximization outperforms traditional actor-critic methods with gradient-based maximization. We have released our code at https://github.com/USC-Lira/Q3C.




Abstract:Imitation learning techniques have been shown to be highly effective in real-world control scenarios, such as robotics. However, these approaches not only suffer from compounding error issues but also require human experts to provide complete trajectories. Although there exist interactive methods where an expert oversees the robot and intervenes if needed, these extensions usually only utilize the data collected during intervention periods and ignore the feedback signal hidden in non-intervention timesteps. In this work, we create a model to formulate how the interventions occur in such cases, and show that it is possible to learn a policy with just a handful of expert interventions. Our key insight is that it is possible to get crucial information about the quality of the current state and the optimality of the chosen action from expert feedback, regardless of the presence or the absence of intervention. We evaluate our method on various discrete and continuous simulation environments, a real-world robotic manipulation task, as well as a human subject study. Videos and the code can be found at https://liralab.usc.edu/mile .
Abstract:We introduce CyberDemo, a novel approach to robotic imitation learning that leverages simulated human demonstrations for real-world tasks. By incorporating extensive data augmentation in a simulated environment, CyberDemo outperforms traditional in-domain real-world demonstrations when transferred to the real world, handling diverse physical and visual conditions. Regardless of its affordability and convenience in data collection, CyberDemo outperforms baseline methods in terms of success rates across various tasks and exhibits generalizability with previously unseen objects. For example, it can rotate novel tetra-valve and penta-valve, despite human demonstrations only involving tri-valves. Our research demonstrates the significant potential of simulated human demonstrations for real-world dexterous manipulation tasks. More details can be found at https://cyber-demo.github.io