Abstract:Endoscopic Submucosal Dissection (ESD) is a well-established technique for removing epithelial lesions. Predicting dissection trajectories in ESD videos offers significant potential for enhancing surgical skill training and simplifying the learning process, yet this area remains underexplored. While imitation learning has shown promise in acquiring skills from expert demonstrations, challenges persist in handling uncertain future movements, learning geometric symmetries, and generalizing to diverse surgical scenarios. To address these, we introduce a novel approach: Implicit Diffusion Policy with Equivariant Representations for Imitation Learning (iDPOE). Our method models expert behavior through a joint state action distribution, capturing the stochastic nature of dissection trajectories and enabling robust visual representation learning across various endoscopic views. By incorporating a diffusion model into policy learning, iDPOE ensures efficient training and sampling, leading to more accurate predictions and better generalization. Additionally, we enhance the model's ability to generalize to geometric symmetries by embedding equivariance into the learning process. To address state mismatches, we develop a forward-process guided action inference strategy for conditional sampling. Using an ESD video dataset of nearly 2000 clips, experimental results show that our approach surpasses state-of-the-art methods, both explicit and implicit, in trajectory prediction. To the best of our knowledge, this is the first application of imitation learning to surgical skill development for dissection trajectory prediction.
Abstract:In this paper, we present a new computer-controlled weaving technology that enables the fabrication of woven structures in the shape of given 3D surfaces by using threads in non-traditional materials with high bending-stiffness, allowing for multiple applications with the resultant woven fabrics. A new weaving machine and a new manufacturing process are developed to realize the function of 3D surface weaving by the principle of short-row shaping. A computational solution is investigated to convert input 3D freeform surfaces into the corresponding weaving operations (indicated as W-code) to guide the operation of this system. A variety of examples using cotton threads, conductive threads and optical fibres are fabricated by our prototype system to demonstrate its functionality.
Abstract:Contributions: The Chinese University of Hong Kong (CUHK)-Jockey Club AI for the Future Project (AI4Future) co-created an AI curriculum for pre-tertiary education and evaluated its efficacy. While AI is conventionally taught in tertiary level education, our co-creation process successfully developed the curriculum that has been used in secondary school teaching in Hong Kong and received positive feedback. Background: AI4Future is a cross-sector project that engages five major partners - CUHK Faculty of Engineering and Faculty of Education, Hong Kong secondary schools, the government and the AI industry. A team of 14 professors with expertise in engineering and education collaborated with 17 principals and teachers from 6 secondary schools to co-create the curriculum. This team formation bridges the gap between researchers in engineering and education, together with practitioners in education context. Research Questions: What are the main features of the curriculum content developed through the co-creation process? Would the curriculum significantly improve the students perceived competence in, as well as attitude and motivation towards AI? What are the teachers perceptions of the co-creation process that aims to accommodate and foster teacher autonomy? Methodology: This study adopted a mix of quantitative and qualitative methods and involved 335 student participants. Findings: 1) two main features of learning resources, 2) the students perceived greater competence, and developed more positive attitude to learn AI, and 3) the co-creation process generated a variety of resources which enhanced the teachers knowledge in AI, as well as fostered teachers autonomy in bringing the subject matter into their classrooms.