



Abstract:Multi-agent systems perform well on general reasoning tasks. However, the lack of training in specialized areas hinders their accuracy. Current training methods train a unified large language model (LLM) for all agents in the system. This may limit the performances due to different distributions underlying for different agents. Therefore, training multi-agent systems with distinct LLMs should be the next step to solve. However, this approach introduces optimization challenges. For example, agents operate at different frequencies, rollouts involve varying sub-agent invocations, and agents are often deployed across separate servers, disrupting end-to-end gradient flow. To address these issues, we propose M-GRPO, a hierarchical extension of Group Relative Policy Optimization designed for vertical Multi-agent systems with a main agent (planner) and multiple sub-agents (multi-turn tool executors). M-GRPO computes group-relative advantages for both main and sub-agents, maintaining hierarchical credit assignment. It also introduces a trajectory-alignment scheme that generates fixed-size batches despite variable sub-agent invocations. We deploy a decoupled training pipeline in which agents run on separate servers and exchange minimal statistics via a shared store. This enables scalable training without cross-server backpropagation. In experiments on real-world benchmarks (e.g., GAIA, XBench-DeepSearch, and WebWalkerQA), M-GRPO consistently outperforms both single-agent GRPO and multi-agent GRPO with frozen sub-agents, demonstrating improved stability and sample efficiency. These results show that aligning heterogeneous trajectories and decoupling optimization across specialized agents enhances tool-augmented reasoning tasks.




Abstract:To accelerate and compress deep neural networks (DNNs), many network quantization algorithms have been proposed. Although the quantization strategy of any algorithm from the state-of-the-arts may outperform others in some network architectures, it is hard to prove the strategy is always better than others, and even cannot judge that the strategy is always the best choice for all layers in a network. In other words, existing quantization algorithms are suboptimal as they ignore the different characteristics of different layers and quantize all layers by a uniform quantization strategy. To solve the issue, in this paper, we propose a differentiable quantization strategy search (DQSS) to assign optimal quantization strategy for individual layer by taking advantages of the benefits of different quantization algorithms. Specifically, we formulate DQSS as a differentiable neural architecture search problem and adopt an efficient convolution to efficiently explore the mixed quantization strategies from a global perspective by gradient-based optimization. We conduct DQSS for post-training quantization to enable their performance to be comparable with that in full precision models. We also employ DQSS in quantization-aware training for further validating the effectiveness of DQSS. To circumvent the expensive optimization cost when employing DQSS in quantization-aware training, we update the hyper-parameters and the network parameters in a single forward-backward pass. Besides, we adjust the optimization process to avoid the potential under-fitting problem. Comprehensive experiments on high level computer vision task, i.e., image classification, and low level computer vision task, i.e., image super-resolution, with various network architectures show that DQSS could outperform the state-of-the-arts.