



Abstract:AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative-but their effectiveness has not been systematically evaluated. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI agents on project-level Java migrations, with a specific focus on measuring an agent's ability to preserve program semantics and avoid reward hacking, which we argue requires projects with high test coverage for a rigorous and reliable evaluation. We benchmark several state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 52.3 percent of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. Our empirical study reveals failure modes of current AI agents in realistic Java modernization tasks, providing a foundation for evaluating trustworthy code-migration systems. By releasing FreshBrew, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
Abstract:Web agents promise to automate complex browser tasks, but current methods remain brittle -- relying on step-by-step UI interactions and heavy LLM reasoning that break under dynamic layouts and long horizons. Humans, by contrast, exploit website-provided functionality through high-level operations like search, filter, and sort. We introduce WALT (Web Agents that Learn Tools), a framework that reverse-engineers latent website functionality into reusable invocable tools. Rather than hypothesizing ad-hoc skills, WALT exposes robust implementations of automations already designed into websites -- spanning discovery (search, filter, sort), communication (post, comment, upvote), and content management (create, edit, delete). Tools abstract away low-level execution: instead of reasoning about how to click and type, agents simply call search(query) or create(listing). This shifts the computational burden from fragile step-by-step reasoning to reliable tool invocation. On VisualWebArena and WebArena, WALT achieves higher success with fewer steps and less LLM-dependent reasoning, establishing a robust and generalizable paradigm for browser automation.
Abstract:We introduce SCUBA, a benchmark designed to evaluate computer-use agents on customer relationship management (CRM) workflows within the Salesforce platform. SCUBA contains 300 task instances derived from real user interviews, spanning three primary personas, platform administrators, sales representatives, and service agents. The tasks test a range of enterprise-critical abilities, including Enterprise Software UI navigation, data manipulation, workflow automation, information retrieval, and troubleshooting. To ensure realism, SCUBA operates in Salesforce sandbox environments with support for parallel execution and fine-grained evaluation metrics to capture milestone progress. We benchmark a diverse set of agents under both zero-shot and demonstration-augmented settings. We observed huge performance gaps in different agent design paradigms and gaps between the open-source model and the closed-source model. In the zero-shot setting, open-source model powered computer-use agents that have strong performance on related benchmarks like OSWorld only have less than 5\% success rate on SCUBA, while methods built on closed-source models can still have up to 39% task success rate. In the demonstration-augmented settings, task success rates can be improved to 50\% while simultaneously reducing time and costs by 13% and 16%, respectively. These findings highlight both the challenges of enterprise tasks automation and the promise of agentic solutions. By offering a realistic benchmark with interpretable evaluation, SCUBA aims to accelerate progress in building reliable computer-use agents for complex business software ecosystems.
Abstract:The rapid advancements in large language models (LLMs) have highlighted the challenge of context window limitations, primarily due to the quadratic time complexity of the self-attention mechanism (\(O(N^2)\), where \(N\) denotes the context window length). This constraint impacts tasks such as retrieval-augmented generation (RAG) in question answering (Q\&A) and long context summarization. A common approach involves selecting content with the highest similarity to the query; however, this often leads to redundancy and the exclusion of diverse yet relevant information. Building on principles from Maximal Marginal Relevance (MMR) and Farthest Point Sampling (FPS), we integrate diversity into the content selection process. Our findings reveal that incorporating diversity substantially increases the recall of selecting relevant sentences or chunks before LLM-based Q\&A and summarization. These results highlight the importance of maintaining diversity in future LLM applications to further improve summarization and Q\&A outcomes.