Abstract:Large language models (LLMs) are increasingly proposed for use in mental health support, yet their behavior in realistic counseling scenarios remains largely untested. We introduce CounselBench, a large-scale benchmark developed with 100 mental health professionals to evaluate and stress-test LLMs in single-turn counseling. The first component, CounselBench-EVAL, contains 2,000 expert evaluations of responses from GPT-4, LLaMA 3, Gemini, and online human therapists to real patient questions. Each response is rated along six clinically grounded dimensions, with written rationales and span-level annotations. We find that LLMs often outperform online human therapists in perceived quality, but experts frequently flag their outputs for safety concerns such as unauthorized medical advice. Follow-up experiments show that LLM judges consistently overrate model responses and overlook safety issues identified by human experts. To probe failure modes more directly, we construct CounselBench-Adv, an adversarial dataset of 120 expert-authored counseling questions designed to trigger specific model issues. Evaluation across 2,880 responses from eight LLMs reveals consistent, model-specific failure patterns. Together, CounselBench establishes a clinically grounded framework for benchmarking and improving LLM behavior in high-stakes mental health settings.
Abstract:Large language models with a transformer-based encoder/decoder architecture, such as T5, have become standard platforms for supervised tasks. To bring these technologies to the clinical domain, recent work has trained new or adapted existing models to clinical data. However, the evaluation of these clinical T5 models and comparison to other models has been limited. Are the clinical T5 models better choices than FLAN-tuned generic T5 models? Do they generalize better to new clinical domains that differ from the training sets? We comprehensively evaluate these models across several clinical tasks and domains. We find that clinical T5 models provide marginal improvements over existing models, and perform worse when evaluated on different domains. Our results inform future choices in developing clinical LLMs.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities across a range of natural language processing (NLP) tasks, capturing the attention of both practitioners and the broader public. A key question that now preoccupies the AI community concerns the capabilities and limitations of these models, with trustworthiness emerging as a central issue, particularly as LLMs are increasingly applied in sensitive fields like healthcare and finance, where errors can have serious consequences. However, most previous studies on the trustworthiness of LLMs have been limited to a single language, typically the predominant one in the dataset, such as English. In response to the growing global deployment of LLMs, we introduce XTRUST, the first comprehensive multilingual trustworthiness benchmark. XTRUST encompasses a diverse range of topics, including illegal activities, hallucination, out-of-distribution (OOD) robustness, physical and mental health, toxicity, fairness, misinformation, privacy, and machine ethics, across 10 different languages. Using XTRUST, we conduct an empirical evaluation of the multilingual trustworthiness of five widely used LLMs, offering an in-depth analysis of their performance across languages and tasks. Our results indicate that many LLMs struggle with certain low-resource languages, such as Arabic and Russian, highlighting the considerable room for improvement in the multilingual trustworthiness of current language models. The code is available at https://github.com/LluckyYH/XTRUST.
Abstract:Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain. The most recent UDA methods always resort to adversarial training to yield state-of-the-art results and a dominant number of existing UDA methods employ convolutional neural networks (CNNs) as feature extractors to learn domain invariant features. Vision transformer (ViT) has attracted tremendous attention since its emergence and has been widely used in various computer vision tasks, such as image classification, object detection, and semantic segmentation, yet its potential in adversarial domain adaptation has never been investigated. In this paper, we fill this gap by employing the ViT as the feature extractor in adversarial domain adaptation. Moreover, we empirically demonstrate that ViT can be a plug-and-play component in adversarial domain adaptation, which means directly replacing the CNN-based feature extractor in existing UDA methods with the ViT-based feature extractor can easily obtain performance improvement. The code is available at https://github.com/LluckyYH/VT-ADA.