Abstract:Long-sequence decision-making, which is usually addressed through reinforcement learning (RL), is a critical component for optimizing strategic operations in dynamic environments, such as real-time bidding in computational advertising. The Decision Transformer (DT) introduced a powerful paradigm by framing RL as an autoregressive sequence modeling problem. Concurrently, Large Language Models (LLMs) have demonstrated remarkable success in complex reasoning and planning tasks. This inspires us whether LLMs, which share the same Transformer foundation, but operate at a much larger scale, can unlock new levels of performance in long-horizon sequential decision-making problem. This work investigates the application of LLMs to offline decision making tasks. A fundamental challenge in this domain is the LLMs' inherent inability to interpret continuous values, as they lack a native understanding of numerical magnitude and order when values are represented as text strings. To address this, we propose treating trajectories as a distinct modality. By learning to align trajectory data with natural language task descriptions, our model can autoregressively predict future decisions within a cohesive framework we term DecisionLLM. We establish a set of scaling laws governing this paradigm, demonstrating that performance hinges on three factors: model scale, data volume, and data quality. In offline experimental benchmarks and bidding scenarios, DecisionLLM achieves strong performance. Specifically, DecisionLLM-3B outperforms the traditional Decision Transformer (DT) by 69.4 on Maze2D umaze-v1 and by 0.085 on AuctionNet. It extends the AIGB paradigm and points to promising directions for future exploration in online bidding.
Abstract:Dynamic graphs are widely used to represent evolving real-world networks. Temporal Graph Neural Networks (TGNNs) have emerged as a powerful tool for processing such graphs, but the lack of transparency and explainability limits their practical adoption. Research on TGNN explainability is still in its early stages and faces several key issues: (i) Current methods are tailored to specific TGNN types, restricting generality. (ii) They suffer from high computational costs, making them unsuitable for large-scale networks. (iii) They often overlook the structural connectivity of explanations and require prior knowledge, reducing user-friendliness. To address these issues, we propose GRExplainer, the first universal, efficient, and user-friendly explanation method for TGNNs. GRExplainer extracts node sequences as a unified feature representation, making it independent of specific input formats and thus applicable to both snapshot-based and event-based TGNNs (the major types of TGNNs). By utilizing breadth-first search and temporal information to construct input node sequences, GRExplainer reduces redundant computation and improves efficiency. To enhance user-friendliness, we design a generative model based on Recurrent Neural Networks (RNNs), enabling automated and continuous explanation generation. Experiments on six real-world datasets with three target TGNNs show that GRExplainer outperforms existing baseline methods in generality, efficiency, and user-friendliness.
Abstract:Trust prediction provides valuable support for decision-making, risk mitigation, and system security enhancement. Recently, Graph Neural Networks (GNNs) have emerged as a promising approach for trust prediction, owing to their ability to learn expressive node representations that capture intricate trust relationships within a network. However, current GNN-based trust prediction models face several limitations: (i) Most of them fail to capture trust dynamicity, leading to questionable inferences. (ii) They rarely consider the heterogeneous nature of real-world networks, resulting in a loss of rich semantics. (iii) None of them support context-awareness, a basic property of trust, making prediction results coarse-grained. To this end, we propose CAT, the first Context-Aware GNN-based Trust prediction model that supports trust dynamicity and accurately represents real-world heterogeneity. CAT consists of a graph construction layer, an embedding layer, a heterogeneous attention layer, and a prediction layer. It handles dynamic graphs using continuous-time representations and captures temporal information through a time encoding function. To model graph heterogeneity and leverage semantic information, CAT employs a dual attention mechanism that identifies the importance of different node types and nodes within each type. For context-awareness, we introduce a new notion of meta-paths to extract contextual features. By constructing context embeddings and integrating a context-aware aggregator, CAT can predict both context-aware trust and overall trust. Extensive experiments on three real-world datasets demonstrate that CAT outperforms five groups of baselines in trust prediction, while exhibiting strong scalability to large-scale graphs and robustness against both trust-oriented and GNN-oriented attacks.