Abstract:Adversarial patch attacks inject localized perturbations into images to mislead deep vision models. These attacks can be physically deployed, posing serious risks to real-world applications. In this paper, we propose CertMask, a certifiably robust defense that constructs a provably sufficient set of binary masks to neutralize patch effects with strong theoretical guarantees. While the state-of-the-art approach (PatchCleanser) requires two rounds of masking and incurs $O(n^2)$ inference cost, CertMask performs only a single round of masking with $O(n)$ time complexity, where $n$ is the cardinality of the mask set to cover an input image. Our proposed mask set is computed using a mathematically rigorous coverage strategy that ensures each possible patch location is covered at least $k$ times, providing both efficiency and robustness. We offer a theoretical analysis of the coverage condition and prove its sufficiency for certification. Experiments on ImageNet, ImageNette, and CIFAR-10 show that CertMask improves certified robust accuracy by up to +13.4\% over PatchCleanser, while maintaining clean accuracy nearly identical to the vanilla model.
Abstract:High-level representations have become a central focus in enhancing AI transparency and control, shifting attention from individual neurons or circuits to structured semantic directions that align with human-interpretable concepts. Motivated by the Linear Representation Hypothesis (LRH), we propose the Input-Space Linearity Hypothesis (ISLH), which posits that concept-aligned directions originate in the input space and are selectively amplified with increasing depth. We then introduce the Spectral Principal Path (SPP) framework, which formalizes how deep networks progressively distill linear representations along a small set of dominant spectral directions. Building on this framework, we further demonstrate the multimodal robustness of these representations in Vision-Language Models (VLMs). By bridging theoretical insights with empirical validation, this work advances a structured theory of representation formation in deep networks, paving the way for improving AI robustness, fairness, and transparency.