Abstract:As the commercial surgical guide design software usually does not support the export of implant position for pre-implantation data, existing methods have to scan the post-implantation data and map the implant to pre-implantation space to get the label of implant position for training. Such a process is time-consuming and heavily relies on the accuracy of registration algorithm. Moreover, not all hospitals have paired CBCT data, limitting the construction of multi-center dataset. Inspired by the way dentists determine the implant position based on the neighboring tooth texture, we found that even if the implant area is masked, it will not affect the determination of the implant position. Therefore, we propose to mask the implants in the post-implantation data so that any CBCT containing the implants can be used as training data. This paradigm enables us to discard the registration process and makes it possible to construct a large-scale multi-center implant dataset. On this basis, we proposes ImplantFairy, a comprehensive, publicly accessible dental implant dataset with voxel-level 3D annotations of 1622 CBCT data. Furthermore, according to the area variation characteristics of the tooth's spatial structure and the slope information of the implant, we designed a slope-aware implant position prediction network. Specifically, a neighboring distance perception (NDP) module is designed to adaptively extract tooth area variation features, and an implant slope prediction branch assists the network in learning more robust features through additional implant supervision information. Extensive experiments conducted on ImplantFairy and two public dataset demonstrate that the proposed RegFreeNet achieves the state-of-the-art performance.




Abstract:Abutment design is a critical step in dental implant restoration. However, manual design involves tedious measurement and fitting, and research on automating this process with AI is limited, due to the unavailability of large annotated datasets. Although self-supervised learning (SSL) can alleviate data scarcity, its need for pre-training and fine-tuning results in high computational costs and long training times. In this paper, we propose a Self-supervised assisted automatic abutment design framework (SS$A^3$D), which employs a dual-branch architecture with a reconstruction branch and a regression branch. The reconstruction branch learns to restore masked intraoral scan data and transfers the learned structural information to the regression branch. The regression branch then predicts the abutment parameters under supervised learning, which eliminates the separate pre-training and fine-tuning process. We also design a Text-Conditioned Prompt (TCP) module to incorporate clinical information (such as implant location, system, and series) into SS$A^3$D. This guides the network to focus on relevant regions and constrains the parameter predictions. Extensive experiments on a collected dataset show that SS$A^3$D saves half of the training time and achieves higher accuracy than traditional SSL methods. It also achieves state-of-the-art performance compared to other methods, significantly improving the accuracy and efficiency of automated abutment design.