Abstract:Predicting multiphysics dynamics is computationally expensive and challenging due to the severe coupling of multi-scale, heterogeneous physical processes. While neural surrogates promise a paradigm shift, the field currently suffers from an "illusion of mastery", as repeatedly emphasized in top-tier commentaries: existing evaluations overly rely on simplified, low-dimensional proxies, which fail to expose the models' inherent fragility in realistic regimes. To bridge this critical gap, we present REALM (REalistic AI Learning for Multiphysics), a rigorous benchmarking framework designed to test neural surrogates on challenging, application-driven reactive flows. REALM features 11 high-fidelity datasets spanning from canonical multiphysics problems to complex propulsion and fire safety scenarios, alongside a standardized end-to-end training and evaluation protocol that incorporates multiphysics-aware preprocessing and a robust rollout strategy. Using this framework, we systematically benchmark over a dozen representative surrogate model families, including spectral operators, convolutional models, Transformers, pointwise operators, and graph/mesh networks, and identify three robust trends: (i) a scaling barrier governed jointly by dimensionality, stiffness, and mesh irregularity, leading to rapidly growing rollout errors; (ii) performance primarily controlled by architectural inductive biases rather than parameter count; and (iii) a persistent gap between nominal accuracy metrics and physically trustworthy behavior, where models with high correlations still miss key transient structures and integral quantities. Taken together, REALM exposes the limits of current neural surrogates on realistic multiphysics flows and offers a rigorous testbed to drive the development of next-generation physics-aware architectures.




Abstract:In this study, we generate and maintain a database of 10 million virtual lipids through METiS's in-house de novo lipid generation algorithms and lipid virtual screening techniques. These virtual lipids serve as a corpus for pre-training, lipid representation learning, and downstream task knowledge transfer, culminating in state-of-the-art LNP property prediction performance. We propose LipidBERT, a BERT-like model pre-trained with the Masked Language Model (MLM) and various secondary tasks. Additionally, we compare the performance of embeddings generated by LipidBERT and PhatGPT, our GPT-like lipid generation model, on downstream tasks. The proposed bilingual LipidBERT model operates in two languages: the language of ionizable lipid pre-training, using in-house dry-lab lipid structures, and the language of LNP fine-tuning, utilizing in-house LNP wet-lab data. This dual capability positions LipidBERT as a key AI-based filter for future screening tasks, including new versions of METiS de novo lipid libraries and, more importantly, candidates for in vivo testing for orgran-targeting LNPs. To the best of our knowledge, this is the first successful demonstration of the capability of a pre-trained language model on virtual lipids and its effectiveness in downstream tasks using web-lab data. This work showcases the clever utilization of METiS's in-house de novo lipid library as well as the power of dry-wet lab integration.