Abstract:Large language models (LLMs) are increasingly applied in long-context scenarios such as multi-turn conversations. However, long contexts pose significant challenges for inference efficiency, including high memory overhead from Key-Value (KV) cache and increased latency due to excessive memory accesses. Recent methods for dynamic KV selection struggle with trade-offs: block-level indexing degrades accuracy by retrieving irrelevant KV entries, while token-level indexing incurs high latency from inefficient retrieval mechanisms. In this paper, we propose CTKVR, a novel centroid-then-token KV retrieval scheme that addresses these limitations. CTKVR leverages a key observation: query vectors adjacent in position exhibit high similarity after Rotary Position Embedding (RoPE) and share most of their top-k KV cache entries. Based on this insight, CTKVR employs a two-stage retrieval strategy: lightweight centroids are precomputed during prefilling for centroid-grained indexing, followed by token-level refinement for precise KV retrieval. This approach balances retrieval efficiency and accuracy. To further enhance performance, we implement an optimized system for indexing construction and search using CPU-GPU co-execution. Experimentally, CTKVR achieves superior performance across multiple benchmarks with less than 1% accuracy degradation. Meanwhile, CTKVR delivers 3 times and 4 times throughput speedups on Llama-3-8B and Yi-9B at 96K context length across diverse GPU hardware.




Abstract:Large language models~(LLMs) have demonstrated impressive performance in various applications, among which role-playing language agents (RPLAs) have engaged a broad user base. Now, there is a growing demand for RPLAs that represent Key Opinion Leaders (KOLs), \ie, Internet celebrities who shape the trends and opinions in their domains. However, research in this line remains underexplored. In this paper, we hence introduce MINDECHO, a comprehensive framework for the development and evaluation of KOL RPLAs. MINDECHO collects KOL data from Internet video transcripts in various professional fields, and synthesizes their conversations leveraging GPT-4. Then, the conversations and the transcripts are used for individualized model training and inference-time retrieval, respectively. Our evaluation covers both general dimensions (\ie, knowledge and tones) and fan-centric dimensions for KOLs. Extensive experiments validate the effectiveness of MINDECHO in developing and evaluating KOL RPLAs.