Abstract:Educational disparities are rooted in and perpetuate social inequalities across multiple dimensions such as race, socioeconomic status, and geography. To reduce disparities, most intervention strategies focus on a single domain and frequently evaluate their effectiveness by using causal decomposition analysis. However, a growing body of research suggests that single-domain interventions may be insufficient for individuals marginalized on multiple fronts. While interventions across multiple domains are increasingly proposed, there is limited guidance on appropriate methods for evaluating their effectiveness. To address this gap, we develop an extended causal decomposition analysis that simultaneously targets multiple causally ordered intervening factors, allowing for the assessment of their synergistic effects. These scenarios often involve challenges related to model misspecification due to complex interactions among group categories, intervening factors, and their confounders with the outcome. To mitigate these challenges, we introduce a triply robust estimator that leverages machine learning techniques to address potential model misspecification. We apply our method to a cohort of students from the High School Longitudinal Study, focusing on math achievement disparities between Black, Hispanic, and White high schoolers. Specifically, we examine how two sequential interventions - equalizing the proportion of students who attend high-performing schools and equalizing enrollment in Algebra I by 9th grade across racial groups - may reduce these disparities.
Abstract:Heterogeneous collaborative computing with NPU and CPU has received widespread attention due to its substantial performance benefits. To ensure data confidentiality and integrity during computing, Trusted Execution Environments (TEE) is considered a promising solution because of its comparatively lower overhead. However, existing heterogeneous TEE designs are inefficient for collaborative computing due to fine and different memory granularities between CPU and NPU. 1) The cacheline granularity of CPU TEE intensifies memory pressure due to its extra memory access, and 2) the cacheline granularity MAC of NPU escalates the pressure on the limited memory storage. 3) Data transfer across heterogeneous enclaves relies on the transit of non-secure regions, resulting in cumbersome re-encryption and scheduling. To address these issues, we propose TensorTEE, a unified tensor-granularity heterogeneous TEE for efficient secure collaborative tensor computing. First, we virtually support tensor granularity in CPU TEE to eliminate the off-chip metadata access by detecting and maintaining tensor structures on-chip. Second, we propose tensor-granularity MAC management with predictive execution to avoid computational stalls while eliminating off-chip MAC storage and access. Moreover, based on the unified granularity, we enable direct data transfer without re-encryption and scheduling dilemmas. Our evaluation is built on enhanced Gem5 and a cycle-accurate NPU simulator. The results show that TensorTEE improves the performance of Large Language Model (LLM) training workloads by 4.0x compared to existing work and incurs only 2.1% overhead compared to non-secure training, offering a practical security assurance for LLM training.