Abstract:Deep Models, typically Deep neural networks, have millions of parameters, analyze medical data accurately, yet in a time-consuming method. However, energy cost effectiveness and computational efficiency are important for prerequisites developing and deploying mobile-enabled devices, the mainstream trend in connected healthcare.
Abstract:Many IoT(Internet of Things) systems run Android systems or Android-like systems. With the continuous development of machine learning algorithms, the learning-based Android malware detection system for IoT devices has gradually increased. However, these learning-based detection models are often vulnerable to adversarial samples. An automated testing framework is needed to help these learning-based malware detection systems for IoT devices perform security analysis. The current methods of generating adversarial samples mostly require training parameters of models and most of the methods are aimed at image data. To solve this problem, we propose a \textbf{t}esting framework for \textbf{l}earning-based \textbf{A}ndroid \textbf{m}alware \textbf{d}etection systems(TLAMD) for IoT Devices. The key challenge is how to construct a suitable fitness function to generate an effective adversarial sample without affecting the features of the application. By introducing genetic algorithms and some technical improvements, our test framework can generate adversarial samples for the IoT Android Application with a success rate of nearly 100\% and can perform black-box testing on the system.
Abstract:Internet of vehicles is a promising area related to D2D communication and internet of things. We present a novel perspective for vehicular communications, social vehicle swarms, to study and analyze socially aware internet of vehicles with the assistance of an agent-based model intended to reveal hidden patterns behind superficial data. After discussing its components, namely its agents, environments, and rules, we introduce supportive technology and methods, deep reinforcement learning, privacy preserving data mining and sub-cloud computing, in order to detect the most significant and interesting information for each individual effectively, which is the key desire. Finally, several relevant research topics and challenges are discussed.
Abstract:The Internet of Things (IoT) integrates billions of smart devices that can communicate with one another with minimal human intervention. It is one of the fastest developing fields in the history of computing, with an estimated 50 billion devices by the end of 2020. On the one hand, IoT play a crucial role in enhancing several real-life smart applications that can improve life quality. On the other hand, the crosscutting nature of IoT systems and the multidisciplinary components involved in the deployment of such systems introduced new security challenges. Implementing security measures, such as encryption, authentication, access control, network security and application security, for IoT devices and their inherent vulnerabilities is ineffective. Therefore, existing security methods should be enhanced to secure the IoT system effectively. Machine learning and deep learning (ML/DL) have advanced considerably over the last few years, and machine intelligence has transitioned from laboratory curiosity to practical machinery in several important applications. Consequently, ML/DL methods are important in transforming the security of IoT systems from merely facilitating secure communication between devices to security-based intelligence systems. The goal of this work is to provide a comprehensive survey of ML /DL methods that can be used to develop enhanced security methods for IoT systems. IoT security threats that are related to inherent or newly introduced threats are presented, and various potential IoT system attack surfaces and the possible threats related to each surface are discussed. We then thoroughly review ML/DL methods for IoT security and present the opportunities, advantages and shortcomings of each method. We discuss the opportunities and challenges involved in applying ML/DL to IoT security. These opportunities and challenges can serve as potential future research directions.
Abstract:With the ever growing diversity of devices and applications that will be connected to 5G networks, flexible and agile service orchestration with acknowledged QoE that satisfies end-user's functional and QoS requirements is necessary. SDN (Software-Defined Networking) and NFV (Network Function Virtualization) are considered key enabling technologies for 5G core networks. In this regard, this paper proposes a reinforcement learning based QoS/QoE-aware Service Function Chaining (SFC) in SDN/NFV-enabled 5G slices. First, it implements a lightweight QoS information collector based on LLDP, which works in a piggyback fashion on the southbound interface of the SDN controller, to enable QoS-awareness. Then, a DQN (Deep Q Network) based agent framework is designed to support SFC in the context of NFV. The agent takes into account the QoE and QoS as key aspects to formulate the reward so that it is expected to maximize QoE while respecting QoS constraints. The experiment results show that this framework exhibits good performance in QoE provisioning and QoS requirements maintenance for SFC in dynamic network environments.
Abstract:The Localization of the target object for data retrieval is a key issue in the Intelligent and Connected Transportation Systems (ICTS). However, due to lack of intelligence in the traditional transportation system, it can take tremendous resources to manually retrieve and locate the queried objects among a large number of images. In order to solve this issue, we propose an effective method to query-based object localization that uses artificial intelligence techniques to automatically locate the queried object in the complex background. The presented method is termed as Fine-grained and Progressive Attention Localization Network (FPAN), which uses an image and a queried object as input to accurately locate the target object in the image. Specifically, the fine-grained attention module is naturally embedded into each layer of the convolution neural network (CNN), thereby gradually suppressing the regions that are irrelevant to the queried object and eventually shrinking attention to the target area. We further employ top-down attentions fusion algorithm operated by a learnable cascade up-sampling structure to establish the connection between the attention map and the exact location of the queried object in the original image. Furthermore, the FPAN is trained by multi-task learning with box segmentation loss and cosine loss. At last, we conduct comprehensive experiments on both queried-based digit localization and object tracking with synthetic and benchmark datasets, respectively. The experimental results show that our algorithm is far superior to other algorithms in the synthesis datasets and outperforms most existing trackers on the OTB and VOT datasets.